Section 4.3 Exercises Part A

- **1.** Three types of horses are in a local ranch. The number of Arabians is 8 more than twice the number of Quarter-horses, and the number of Clydesdales is 50 more than the number of Quarter-horses. There are a total of 282 horses at the ranch. How many of each kind are there?
- 2. What is the slant height of a cone that has Surface Area of 219.91 in² and a radius of 5 in?
- **3.** The perimeter of a rectangle is 120 in. If the length of the rectangle is 3 more than twice the width, what are the dimensions of the rectangle?
 - 4. Original Price:\$392.50 Tax: 6% Final Price:
- 5. Original Price: Tax: 7% Final Price: \$73.90

Fill out the table for each of the following:

6.
$$2x - 3y = 9$$

7.	v =	$\frac{7}{2}x + 2$
7.	у —	$\frac{-}{2}\Lambda \pm \Delta$

X	у
5	
-4	
	3
	0
	7

X	y
2	
0	
-1	
	0
	4

Graph the following lines, and label x and y intercepts.

8.
$$5x + 2y = 10$$

9.
$$y = \frac{4}{7}x - 6$$

10.
$$y = \frac{8}{3}x$$

12.
$$y = -\frac{3}{7}x + 4$$

13.
$$7x - y = 14$$

Find the slope between each pair of points.

Graph the following lines giving one point and the slope.

$$Ex. 2x - 7y = 3$$

Find one point: $(\frac{3}{2},0)$ and the slope: $m = \frac{2}{7}$.

Then graph the point. Then go up 2 and over 7 for the next one:

20.
$$-6x + y = 10$$

21.
$$y = 4x + 3$$

22.
$$y = \frac{1}{2}x - 4$$

23.
$$x = -6$$

24.
$$y = -\frac{3}{7}x - 2$$

25.
$$3x - 4y = 12$$

26.
$$5x + 3y = 10$$

27.
$$x + 4y = 9$$

Preparation

29.Make up 5 equations of lines that have the slope:

$$m = -\frac{3}{8}$$

Answers:

- 1. 56 Quarter-horses, 106 Clydesdales, 120 Arabian
- slant height = 9 in 2.
- **3.** 41in X 19in
- \$416.05 4.
- \$69.07 **5.**

6.

X	y
5	$\frac{\frac{1}{3}}{3}$
-4	$-\frac{17}{3}$
9	3
$\frac{9}{2}$	0
15	7

(0,0)(3,8)**10.**

21.

(0,10); m = 6 **20.**

(10,0) no y-int 11.

7.

X	y
2	9
0	2
-1	$-\frac{3}{2}$
$-\frac{4}{7}$	0
$\frac{4}{7}$	4
	$ \begin{array}{c} 2 \\ 0 \\ -1 \\ -\frac{4}{7} \end{array} $

(0,-4); m = $\frac{1}{2}$ 22.

8.

24.

9.

- m = -5**14.**
- $m = -\frac{5}{13}$ **15.**
- **16.** m = undefined
- **17.** $m = \frac{2}{3}$
- $m = \frac{4}{9}$ **18.**
- **19.** m = 0

25. (4,0); $m = \frac{3}{4}$

27. (9,0); $m = -\frac{1}{4}$

29. Discuss it together.

26. (2,0); $m = -\frac{5}{3}$

28. (15,7); m = 0