We will use the point-slope form to find the equation of the line. Point-slope form is:
\({\text{y}}{-}{\text{y}_{1}}=\text{m}\left ( {\text{x}}{-}{\text{x}_{1}} \right )\)
We will use the point (10, 6) and the slope of \({\color{DarkOrange} \frac{1}{5}}\) and substitute them in to:
\({\text{y}}{-}{\color{Purple} {\text{y}_{1}}}={\color{DarkOrange} \text{m}}\left ( {\text{x}}{-}{\color{Red} {\text{x}_{1}}} \right )\)
Then distribute on the right side:
\({\text{y}}{-}{\color{Purple}6}={\color{Orange}\frac{1}{5}}{\text{x}}-{\color{Orange}\frac{1}{5}}(10)\)
Which simplifies to:
\({\text{y}}{-}6={\color{Orange}\frac{1}{5}}{\text{x}}-2\)
Add 6 to both sides:
\({\text{y}}{-}6{\color{Red}+6}={\color{Orange}\frac{1}{5}}{\text{x}}-2{\color{Red}+6}\)
Which gives us the equation:
\(\text{y}={\color{DarkOrange} \frac{1}{5}}\text{x}+{\color{Red} 4}\)
The equation is in slope-intercept form, y=mx+b, so we can see that the y-intercept is at 4 or the point (0,4).