In this example, we need to get the variable \({\text{X}}\) all alone. To do this we add the inverse of \(\frac{5}{9}\) to both sides of the equation.
We add \(-\frac{5}{9}\) to both sides.
The left side of the equation:
Positive \(\frac{5}{9}\) plus negative \(\frac{5}{9}\) equals \(0\). This leaves just the variable \({\text{X}}\) by itself.
The right side of the equation:
In order to add \(\frac{1}{3}+-\frac{5}{9}\) we need to first get common denominators.
\(9\) is a multiple of \(3\), so our least common multiple is \(9\).
Multiply \(\frac{1}{3}\) by \(1\) in the form of \(\frac{3}{3}\) to change its denominator to \(9\).
\({\text{X}}=\left (\frac{1}{3} \right ){\color{Cyan} \left (\frac{3}{3} \right )}{\color{DarkGreen} + {\color{Red} -}\frac{5}{9}}\)
\({\text{X}}=\frac{1 \cdot {\color{Cyan} 3}}{3 \cdot {\color{Cyan} 3}}{\color{DarkGreen} + {\color{Red} -}\frac{5}{9}}\)
\({\text{X}}={\color{Cyan} \frac{3}{9}} {\color{DarkGreen} + {\color{Red} -}\frac{5}{9}}\)
Now that our fractions have the same denominator, we can add the numerators.
\(3+-5=-2\)
\({\text{X}}=\frac{{\color{Cyan} 3}}{9} + {\color{Red} -}\frac{{\color{DarkGreen} 5}}{9}\)
\({\text{X}}=\frac{{\color{Cyan} 3+{\color{Red} -}{\color{DarkGreen} 5}}}{9}\)
\({\text{X}}=\frac{{\color{Red} -}{\color{Orange} 2}}{9}\)
Our final solution: \({\text{X}} = -\frac{2}{9}\)