In this case, we are using the quotient rule on both variables \({\text{m}}\) and \({\text{x}}\).
\(\frac{{\color{Blue} {\text{m}}}^{3}{\color{DarkOrange} {\text{x}}}^{7}}{{\color{Blue} {\text{m}}}^{3}{\color{DarkOrange} {\text{x}}}^{2}}\)
First, look at the quotient rule for the \({\text{m}}\) variables.
\(\frac{{\text{m}}^{3}}{{\text{m}}^{3}} = {\text{m}}^{\left ( 3-3 \right )} = {\text{m}}^{0} = 1\)

Since \({\text{m}}^{\left ( 3-3 \right )} = {\text{m}}^{0} = 1\), and 1 multiplied to anything is itself, we only have the \({\text{x}}\) variables left.
\({\color{Blue} {\text{m}}}^{\left ( 3-3 \right )}\cdot\frac{{\text{x}}^{7}}{{\text{x}}^{2}} = {\color{Blue} {\text{m}}}^{0} \cdot\frac{{\text{x}}^{7}}{{\text{x}}^{2}}={\color{Blue} 1}\cdot\frac{{\text{x}}^{7}}{{\text{x}}^{2}}\)
Now we look at the \(x\) variables and their exponents.
\(\frac{{\text{x}}^{7}}{{\text{x}}^{2}} = {\text{x}}^{\left ( 7-2 \right )} = {\text{x}}^{5}\)
\({\color{Blue} 1}\cdot\frac{{\color{DarkOrange} {\text{x}}}^{7}}{{\color{DarkOrange} {\text{x}}}^{2}} = {\color{Blue} 1}\cdot {\color{DarkOrange} {\text{x}}}^{\left ( 7-2 \right )} = {\color{Blue} 1}\cdot {\color{DarkOrange} {\text{x}}}^{5} = {\color{DarkOrange} {\text{x}}}^{5}\)
So we have \(1 \cdot {\text{x}}^{5} = {\text{x}}^{5}\)