Rules of Exponents:

Applying Them Together

In some of the exercises you will do, there will be multiple steps to simplifying the expression, much like in the Order of Operations. Each of these rules is a tool and all the tools can be used together to simplify expressions.

Video Source (03:43 mins) | Transcript

Just to review:

Additional Resources


Practice Problems

Simplify and Evaluate the following expressions:

  1. \({\text{a}}^{5}{\text{b}}^{3}\left ( {\text{a}}{\text{b}} \right )^{4}{\text{b}} =\)

  2. \(\left ({\text{x}}{\text{y}} \right )^{3}{\text{x}}{\text{y}} =\)

  3. \(\frac{{\text{x}}^{5}{\text{y}}^{3}{\text{x}}^{2}}{{\text{x}}^{6}{\text{y}}^{2}}=\)

  4. \(\frac{{\text{m}}^{3}{\text{x}}^{7}}{{\text{m}}^{3}{\text{x}}^{2}}=\)

  5. \(\left ( {\text{b}}^{4}{\text{x}}^{3}{\text{y}}{\text{b}} \right )^{2}{\text{x}} =\)

  6. \(\left ( {-}{\text{m}} \right )^{3}{\text{b}}^{2}{\text{mx}}^{3} =\)

  7. \(\left ( -3 \right )^{3}{\text{a}}^{2}{\text{b}}^{4}\left ( -2 \right )^{2} =\)

Solutions

  1. \({\text{a}}^{9}{\text{b}}^{8}\) (Written Solution)
  2. \({\text{x}}^{4}{\text{y}}^{4}\)
  3. \({\text{x}} {\text{y}}\) (Solution Video | Transcript)
  4. \({\text{x}}^{5}\) (Written Solution)
  5. \({\text{b}}^{10}{\text{x}}^{7}{\text{y}}^{2}\) (Solution Video | Transcript)
  6. \(-{\text{m}}^{4}{\text{b}}^{2}{\text{x}}^{3}\)
  7. \(-108{\text{a}}^{2}{\text{b}}^{4}\)