Table of Contents

1) (o) A @0 1 1 oL IR 1
CoUTSE OVEIVIEW ..o 2
Computers & Programsccooiiiiiiiiiiiiiiiiee e 4
1.0 First Programccooiiiiiiiiiiiiiiiiiicc s 13
L1 OUtPUL....cii 24
1.2 Input & Variablesccooiiiiiiiiiiiiii 35
1.3 EXPIESSIONS ..c.veiiiiiiiiiiiiiicii s 46
1.4 FUNCHIONS ... nesnennnnnes 58
1.5 Boolean EXPIessiOnscccccviiiiiiiiiiiiiiiiiiciccice s 76
1.6 TF Stat@IMCIIES. ..uuuneeiiieiiiiiceee e e et ee e ettt ee e e e e e e e e ee e e e e e e e e st eeeeeeeeesstaeeeeeeeeenaes 86
UNIE T Practice TEST coveeiiiiiiiiiiiieeeeeeeeeeeeeee et eeeeeeennaees 99
Unit 1 Project : Monthly Budgetoooiiiiiiiiiiiiiiccecce, 101
2.0 MOAUIATIZATIONeeiiiiiiiiiieeeeeeeeee et eeeeanenees 108
2.1 DEBUZZING. ..ottt 130
2.2 Designing AlZOrithmscccoiiiiiiiiiiiiiic e 145
2.3 LLOOP SYNEAX ..niiiiiiiieie ittt s 156
2.4 L0OP OULPUL ...ttt s 168
2.5 LoOP DESIZN....iiiiiiiiiiiiiiciee e 181
2.0 FHICS oo 190
UNIt 2 PractiCe TEST cooveiiiiiiiiieiieeeeeeee et eeeeneanees 207
Unit 2 Project : Calendar Program..........c..ccocooiiiiiiiiiiiiiicccccec e 209
3.0 ALTAY SYNEAX ..oviiiiiiiiiiieii e 214
3.1 ACTaY DIESIZI .o 233
B2 SEIINES 1ot 242
BLB POINLEES wuvveeeeeeeeeeeeee e e e e e ettt e e e e e e e ettt e e e e e e e e e et e e e e e e e e e e arraeeeeeeaaaaes 255
3.4 Pointer ArithmetiC ... 269
3.5 Advanced Conditionalsoeeiiiiiiiiiiiiii e 284
TNt 3 PraCctiCe TEST .uuuueuueeieieeeeiteeee e nnnnn 301
Unit 3 Project : MadLibcoooiiiiiiiiiiiiiiiii et 303
4.0 Multi-Dimensional ArTays..........ccoeviiiiiiiiiiiiiieec e 309
4.1 Allocating MEMOLYooiuiiiiiiiiiiiiiiiiieiee e s 324
4.2 8tring ClaSs......cvoiiiiiiiiicc 337
4.3 ComMANA LLINC.....uuiiiiiiieiiiiiiii e nnnnnnnn 346
4.4 TNSTIUMENTATION 1..euviiviiieeeeeeeeeeitieeeeeeeeeeetareeeeeeeeeeetasreeeeeeeessessssreeeeeessaenrsraeeeaaeans 356
UNIt 4 PractiCe TEST .ooiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee ettt e e e eeeeeeeeeeeeeeeeeeseseesesesssssassessreereaeees 361
Unit 4 Project : SUAOKU ...c..eeiuiiiiiiiiiieieciieiteie ettt 363
AL Elements of Style........ccooiiiiiiiiiiiiiii 369
B. Order of OPErationsccueouiiiiiiiiiiiiiiieieic e 375
CoLab HelP..oouiiiiiiiiiicc s 376
D. Emacs & LinuxX Cheat-Sheetuvvviiiiiiiiiiiiieieee et 377
E. C++ Syntax Reference Guideccooiiiiiiiiiiiiiiiiiicc 378
FLGIOSSAIY ... 381

G INACX ciiiiiii 393

Course Overview

Procedural programming is the process of solving programming challenges by breaking large problems into
smaller ones. These sub-problems are called procedures.

Goals

The goal of this class is that each student will be able to solve problems in C++ and have a solid foundation
in software development methodology. By the end of the semester...

e You will be well prepared for CS 165 and the other course in computing majors. This class is the
foundation on which all Computer Science (CS), Electrical Engineering (EE), and Electrical &
Computer Engineering (ECEN) courses are based.

e You will have confidence in your ability to solve problems with C+ +. This class will include tons of
opportunities for hands-on programming. By the end of the semester, you will have written more
than thirty programs.

e You will possess a tool-bag of different approaches to solve software problems. Not only will we
learn the mechanics of the C+ + programming language, we will also learn how to solve
programming problems using procedural tools.

e You will have a firm foundation in the basic constructs of procedural C+ +. All the components of
procedural programming (except structures) will be learned in CS 124. Object Oriented
Programming, the second half of the C++ language, is the topic of next semester.

These goals will be explored in the context of C++ using the Linux operating system.

Course Layout
The course will be broken into four sections:

1. Simple Programs. How to write your first program and begin thinking like a programmer. At the
end of this section, you will be able to write a program with multiple functions, IF statements, and
complex mathematical operations.

2. Loops. The goal of this section is to be able to solve problems using loops. Additionally we will learn
several tools enabling us to solve hard programming problems and manage programs with large
amounts of complexity.

3. Arrays. Next we will learn how to handle and manipulate large amounts of data in increasingly
complex data structures. Specifically, we will learn about arrays, pointers, and file I/O.

4. Advanced Topics. The final section of the course will involve learning about a collection of
specialized topics (dynamic memory allocation, multi-dimensional arrays, jagged arrays, and
instrumentation to name a few) in the hopes they will help us understand the main topics of the
semester better. In other words, the goal is not to learn these specialized topics so much as to make
sure we have nailed the fundamentals.

Page2 | Course Overview | Unit 0: Overview | Procedural Programming in C++

How to Use This Textbook

This textbook is closely aligned with CS 124. All the topics, problems, and technology used in CS 124 are
described in detail with these pages.

Sam and Sue

You may notice two characters present in various sections of this text. They embody two common archetypes
representative of people you will probably encounter in industry.

>
T8

Sue is a pragmatist. She cares only about getting the job done at a high quality level and with
the minimum amount of effort. In other words, she cares little for the art of programming,
tfocusing instead on the engineering of the craft.

Sue’s Tips tend to focus on the following topics:
e DPitfalls: How to avoid common programming pitfalls that cause bugs
e Effort: How to do the same work with less time and effort
e Robustness: How to make code more resistant to bugs
e Efficiency: How to make code execute with fewer resources

Sam is a technology nerd. He likes solving hard problems for their own sake, not
necessarily because they even need to be solved. Sam enjoys getting to the heart of a

problem and finding the most elegant solution. It is easy for Sam to get hung up on a problem for
hours even though he found a working solution long ago.

The following topics are commonly discussed in Sam’s Corner:

e Details: The details of how various operations work, even though this knowledge is not
necessary to get the job done
e Tidbits: Interesting tidbits explaining why things are the way they are

Neither Sue’s Tips nor Sam’s Corner are required knowledge for this course. However, you may discover
your inner Sam or Sue and find yourself reading one of their columns.

Needing Help
Occasionally, each of us reaches a roadblock or feels like help is needed. This textbook offers two ways to bail
yourself out of trouble.

If you find you are not able to understand the problems we do in class, work through them at home before
class. This will give you time for reflection and help ask better questions in class.

If you find the programming problems to be too hard, take the time to type out all the examples by hand.
Once you finish them, work through the challenge associated with each example. There is something about
typing code by hand that helps it seep into our brains. I hope this helps.

Procedural Programming in C++ | Unit 0: Overview | Course Overview | Page 3

Computers & Programs

Sam is talking with an old high school friend when he find out he is majoring in Computer Science. “You
know,” said his friend, “I have no idea how a computer works. Could you explain it to me?” Sam is stumped
tfor a minute by this. None of the most common analogies really fit. A computer is not really like a calculator
or the human brain. Finally, after much thought, Sam begins: “Computer programs are like recipes and the
computer itself is like the cook following the instructions...”

Objectives
By the end of this class, you will be able to:

e Identify the major parts of a computer (CPU, main memory, etc.).
e Recite the major parts of a computer program (statements, headers, etc.).
e Type the code for a simple program.

Overview of Computers and Programs

Consider a simple recipe for making cookies. The recipe consists of the ingredients (the materials used to
make the cookies) as well as the instructions (such as “stir in the eggs”). If the recipe was precise enough then
any two cooks would be able to produce an identical set of cookies from the provided ingredients. Most
recipes, however, are ambiguous. This requires the cook to improvise or use his best judgment. This analogy
holds well to the relationship between computers and programs with one exception: the computer is unable
to Improvise:

e Cook: The cook is the computer executing the instructions.

e Recipe: The recipe is the computer program to be executed.

e Ingredients: The ingredients are the input to the program.

e Cookies: The cookies correspond to the output of the program.

o Chef: The chef'is the person who came up with the recipe. This is the role of the programmer.

Your job this semester is to derive the recipe (computer program) necessary to produce the desired cookies
(output) from the provided ingredients (input).

Page4 | Computers & Programs | Unit 0: Overview | Procedural Programming in C++

Computers

Computers today are all based on the basic model developed by Dr. John von Neumann. They consist of a
CPU (the part that executes instructions), the Memory (the part where programs and data are stored), the
bus (the wire connecting all components), and the peripherals (input and output devices).

Memory Display Keyboard

Cru

Bus

Please view the following movie to learn more about the parts of a computer:

Parts of a Computer

% Possibly the most important part of a computer is the CPU. This has several components: the memory
interface (operating much like a controller, it puts data on the bus and takes data oft the bus), instruction
fetcher (determines which instruction is next to be executed), the instruction decoder (interpreting what a
given instruction does), the registers (keeping temporary data), and the ALU (Arithmetic Logic Unit,
performing math and logical operations). Please view the following movie to learn more about the parts of a

computer:
The CPU
Finally, programs consist of simple instructions that are executed by the CPU.

Instruction Fetcher

Instruction Decoder

Registers Memory

Interface

L) B

Procedural Programming in C++ | Unit 0: Overview | Computers & Programs | Page 5

https://video.byui.edu/media/Computer+1+-+Parts/0_pw02vv6b/18442462
https://video.byui.edu/media/Computer+2+-+CPU/0_wjslsmbk/18442462
https://video.byui.edu/media/Computer+1+-+Parts/0_pw02vv6b/18442462
https://video.byui.edu/media/Computer+2+-+CPU/0_wjslsmbk/18442462

The following is a sample instruction set (real CPUs have hundreds of instructions but do essentially the same

thing):
Name Opcode Description Example
NOOP 0 Do nothing NOOP
LOsb 1 Load a value from some memory location into the register LOAD M:3
=10 2 Set the register to some value SEild
S 3 Saves the value in a register to some memory location SAVE M:10
Ul 5 Sets the Next Instruction value to some memory location JUNBRAI-6
U2 6 Same as JUMP except only sets the Next Instruction value if the JUMPZ M:0

register 1s set to zero

oY 8 Adds a value to the register ADDEL
Al 9 Subtracts a value from what is currently in the register SUB 1
el 10 Multiplies the current value in the register by some value ol 2
S 11 Integer division for some value in the register DIV 2
AU 12 Returns 1 if the value and the register are both non-zero A
2l 13 Returns 1 if the value or the register is non-zero OR 1
e 14 Returns 1 if the value in the register is zero e

Please view the following movie to learn about how these instructions can be used to make a program:

Programs

The last item is an emulator (a program that pretends it is something else. In this case, it emulates the simple
~_computer presented in the previous movies).

Emulator
To run a program:
1. Type or paste the program in the large edit control below the “Load Program” label. Make sure there

is one instruction per line or it will not work correctly. You may also need to delete an extra space.

2. Press the | 289" bugton. This will load the program into memory and set the “Next Instruction”
pointer to zero.

3. Step through the program, one instruction at a time, by pressing the @ buceon.

A couple programs you may want to run... what will they do?

SET oxff SET oxff
SAVE D:© SAVE D:0
SET 0x00 LOAD M:3
SAVE D:© ADD 1
JUMP M:0 SAVE M:3
JUMP M:0

Page 6 | Computers & Programs | Unit 0: Overview | Procedural Programming in C++

https://video.byui.edu/media/Computer+3+-+Programs/0_txeqmrku/18442462
https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/Emulator/EmulatorContent.html
https://video.byui.edu/media/Computer+3+-+Programs/0_txeqmrku/18442462
https://content.byui.edu/file/05b10553-a9b6-48e1-ba44-757b64932af9/1/EmulatorContent.html

Programs

There are many computer languages, each enabling the programmer to write a computer program. In this
class, we will be using the C++ language developed by Bjarne Stroustrup in the early 1980’s. A C++
program consists of two parts: the header and the functions. The header describes what tools will be used in
the program and the functions contain the recipes themselves. The functions consist of individual instructions
called statements:

The “pound include” statement allows The using statement allows us to Every C"j + program begins with a function
the program to include a library. conveniently access the library allizdl e,

functions. This library function is . .
The iostream library allows you to el @itz bt Foy spmdluel This tcllls the program where to begin
read/write data to the screen execution.

#include <iostream>
using namespace std;
/**
* This program will display “Hello World!”

* to the screen.
**/
int main()

{

cout << "Hello World!" << endl;
return 0;

The return statement lets us

« ., exit the function. Here we are
surrounded by “curly braces”. leavine the return code of ©
All functions encapsulate their Co deg — 0 No Err01.‘ We are “piping” the text “Hello World!” to the output

ith curly b . . . i .
code with curly braces Gt = 02 Imerensinng Severttey function called cout

Every block of related code is This line actually does the work for this program.

IOSTREAM: This simple program has two parts to the header. The first part indicates that the iostream
library will be used. The iostream library contains many useful tools that we will be using in every program
this semester, including the ability to display text on the screen. There are other libraries we will be introduced
to through the course of the semester, including iomanip, cassert, and fstream.

NAMESPACE: The second line of code in the header indicates we are to be using the shorthand version
of the tools rather than the longer and more verbose versions. This semester we will always have “using
namespace std;” at the top of our programs, though in CS 165 we will learn when this may not be desirable.

CURLY BRACES: All the instructions or statements in a C++ program exist in functions. The {}s (called
“curly braces”) denote where the function begins and ends. Most programs have many functions, though
initially our programs will only have one. Back to our recipe analogy, a program with many functions is
similar to a recipe having sub-recipes to make special parts (such as the sauce). The functions can be named
most anything, but there must be exactly one function called main(). When a program begins, execution starts
at the head of main().

COUT: The first instruction in the program indicates that the text “Hello world” will be displayed on the
screen. We will learn more about how to display text on the screen, as well as how to do more complex and
powerful tasks later in the semester (Chapter 1.1).

RETURN: The last statement in this example is the return statement. The return statement serves two
purposes. The first is to indicate that the function is over. If, for example, a return statement is put at the
beginning of a function, all the statements after return will not be executed. The second purpose is to send

Procedural Programming in C++ | Unit 0: Overview | Computers & Programs | Page 7

data from one function to another. Consider, for example, the absolute value function from mathematics. In
this example, the output of the absolute value function would be sent to the client through the return
mechanism. We will learn more about the use of return later in the semester (Chapter 1.4).

Comments

Strictly speaking, the sole purpose of a recipe is to give the cook the necessary information to create a dish.
However, sometimes other chefs also need to be able to read and understand what the recipe is trying to do.
In other words, it is often useful to answer “why” questions (example: “Why did we use whole wheat flour
instead of white flour?”) as well as “how” questions (example: “How do I adjust the recipe for high
elevation?”). We use comment to address “why” questions.

Comments are notes placed in a program that are not read by the compiler. They are meant to make the
program more human-readable and easier to adjust. There are two commenting styles in C+ +: line and block
comments.

Line comments

Line comments indicate that all the text from the beginning of the line comment (two forward slashes //) to
the end of the line is part of the comment:

{
// line comments typically go inside functions just before a collection
// of related statements
cout << "Display text\n"; // You can also put a line comment on the end
// of a line of code like this.
}

Some general guidelines on comments:

e Comments should answer “Why” and “How” questions such as “Why is this variable set to zero?”
or “How does this equation work?”

e Comments should not state the obvious.

e When there are multiple related statements in a function, set them apart with a blank line and a
comment. This facilitates skimming the function to quickly gain a high-level understanding of the
code.

Block comments

Block comments start with /* and continue until a */ is reached. They can span multiple lines, but often do
not. We typically use block comments at the beginning of the program:

AR A AR KRR KK S KRR SR SR K SRS K S KSR SRR SRR K K Sk R ok

* Program:
* Assignment 10, Hello World
Brother Helfrich, CS124
Author:
Sam Student
Summary:
This program is designed to be the first C++ program you have ever
written. While not particularly complex, it is often the most difficult

to write because the tools are so unfamiliar.
stk ok skok ok skokskok skl ok skokskok koot sk kst sk skl ok skokokosk kol sk skokosk sk kol sk skt sk skl ok skt sk koot skokok sk ok ok ok ok

* X X X X ¥ ¥

All programs created for CS 124 need to start with this comment block. Observe how the comment blocks
starts with the /* at the top and continues until the */ on the last line. We will start all of our programs with
the same comment block. Fortunately there is a template provided so you won’t have to type it yourself.

Page8 | Computers & Programs | Unit 0: Overview | Procedural Programming in C++

We also have a comment block at the beginning of every function. This comment block should state the name
of the function and briefly describing what it is designed to do. If there is anything unusual or exceptional
about the function, then it should be mentioned in the comment block. The following is an example of a
function comment block:

/**
* MAIN

* This program will display a simple message on the screen
**/

Problem 1

Which part of the CPU performs math operations?
Answer:

Please see page 5 for a hint.
Problem 2
It a program is like a recipe for cookies then which of the following is most like the data of the program?

e Ingredients
e Instructions
e Measurements

e Chef

Please see page 4 for a hint.

Procedural Programming in C++ | Unit 0: Overview | Computers & Programs | Page 9

Problem 3

What is missing from this program?
#include <iostream>
int main()
{

cout << "Howdy\n";

return 0;

Answer:

Please see page 7 for a hint.

Problem 4

Which of the following is a function?

int main()
#include <iostream>
return 0;

using namespace std;

Problem 5

What is wrong with this program?

Please see page 7 for a hint.

#include <iostream>
using namespace std;

int main()

{
}
Answer:

cout << "Howdy\n";

Please see page 7 for a hint.

Page 10 | Computers & Programs | Unit 0: Overview | Procedural Programming in C++

In I-Learn, please answer the following questions:

1. What does the following assembly program do?

SET oxff
SAVE D:©o
SET 0x00
SAVE D:0
JUMP M:0

2. What does the following assembly program do:

SET oxff
SAVE D:0
LOAD M:3
ADD 1

SAVE M:3
JUMP M:0

3. Write the code to put “Hello world” on the screen:

4. What is the purpose of comments in a program:?

5. Give an example of all the ways to write a comment in C++:

Procedural Programming in C++ | Unit 0: Overview | Computers & Programs | Page 11

Unit 1. Simple Programs

1.5 Boolean EXPIesSiONscccocuiiiiiiiiiiiiiii i 76
1.6 TF STatemENTS.cocuviiiiiiiiiiiiiiiiiic i 86
Unit 1 Practice TStcc.iiiiiiiiiiiiieie e 99
Unit 1 Project : Monthly Budget ..o 101

Page 12 | Computers & Programs | Unit 1: Simple Program | Procedural Programming in C++

e —

Unit 1. Simple Programs
WA=

1.0 First Program

Sue is home for the Christmas holiday when her mother asks her to fix a “computer problem.” It turns out
that the problem is not the computer itself, but some data their bank has sent them. Instead of e-mailing a
list of stock prices in US dollars ($), the entire list is in Euros (€)! Rather than perform the conversion by
hand, Sue decides to write a program to do the conversion. Without referencing any books (they are back in
her apartment) or any of her previous programs (also back in her apartment), she quickly writes the code to
complete the task.

Objectives
By the end of this class, you will be able to:
e Use the provided tools (Linux, emacs, g++, styleChecker, testBed, submit) to complete

a homework assignment.
e Be familiar with the University coding standards (Appendix A. Elements of Style).

Prerequisites

Before reading this section, please make sure you are able to:

e Type the code for a simple program (Chapter 0.2).

Overview of the process

The process of turning in a homework assignment consists of several steps. While these steps may seem
unfamiliar at first, they will be well-rehearsed and second-nature in a week or two. The lab assistants (wearing
green vests in the Linux lab) are ready and eager to help you if you get stuck on the way. The process consists
of the following steps:

Log into the lab

Copy the assignment template using cp
Edit your file using emacs

Compile the program using g++

Verify your solution with testBed
Verify your style with styleChecker
Turn it in with submit

N YU D

This entire process will be demonstrated in “Example — Hello World” at the end of the chapter.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.0 First Program | Page 13

0. Login

All programming assignments are done on the Linux system. This includes the pre-class assignments, the
projects, and the in-lab tests. You can either go to the Linux Lab to use the campus computers, or connect
remotely to the lab from your personal computer. Either way, you will need to log in. If you have not done
this in Assignment 0.0, please re-visit the quiz for the default password. The lab assistants will be able to help
you reset your password if necessary. Please see Appendix C: Lab Help for a description of what the lab
assistants can and cannot do.

It is worthwhile to set up your computer so you do not need to come to the lab to do an assignment. The
method is difterent for a Microsoft Windows computer than it is for an Apple Macintosh computer.

Remote access for Windows computers

1. Download the tool called PuTTY
Setup - PuTTY

2. Go to the lab and read the IP address (four numbers separated by periods) from any machine in the
lab. They are 157.201.194.201 through 157.201.194.210. This will be the physical machine you are
accessing when using remote access

3. Boot PuTTY and type in your IP address from step 2 and the port 215. You might want to save this
session so you don't have to keep typing the numbers in.

4. Select [OPEN]. After you specify your username and password, you are now logged into that
machine.

Remote access for Macintosh or Linux computers

If you are on a Macintosh or a Linux computer, bring up a terminal window and type the following command:
ssh <username>@<ip> -p 215

If, for example, you want to connect to machine 157.201.194.230 and your username is “sam”, then you would
type:

ssh sam@157.201.194.230 -p 215
For more information, please see:

Setup - Terminal

Page 14 | 1.0 FirstProgram | Unit 1: Simple Program | Procedural Programming in C++

https://content.byui.edu/file/cddfb9c0-a825-4cfe-9858-28d5b4c218fe/1/Course/124.Setup-Putty.html
https://content.byui.edu/file/cddfb9c0-a825-4cfe-9858-28d5b4c218fe/1/Course/124.Setup-Terminal.html

1. Copy Template

Once you have successfully logged into the Linux system (either remotely or in the Linux Lab), the next step
is to copy over the template for the assignment. All the assignments for this class start with a template file
which has placeholders for the assignment name and the author (that would be you!). This file, and all other
files pertaining to the course, can be found on:

/home/cs124
The assignment (and project and test) template is located on:
/home/cs124/template.cpp

On the Linux system, we type commands rather than use the mouse. The command used to copy a file is
called “cp”. The syntax for the copy command is:

cp <source file> <destination file>

If, for example, you were to copy the template from /home/cs124/template. cpp into hwie.cpp, you would type
the following command:

cp /home/csl24/template.cpp hwl@.cpp

Most Linux commands do not display anything on the screen if they were successful. You will need to do a
directory listing (1s) to see if the file copied. A list of other common Linux commands are the following:

Navigation cd oiiiiinn Change Directory
tools 1S ceviennnnn. List information about file(s)
cat ...l Display the contents of a file to the screen
clear Clear terminal screen
exit c........ Exit the shell
yppasswd Modify a user password
Organization mkdir Create new folder(s)
tools MV ooeeeennne. Move or rename files or directories
1 Remove files
Programming emacs Common code editor
tools Vi More primitive but ubiquitous editor
-2 Compile a C+ + program
Homework stylechecker . Run the style checker on a file
tools testBed Run the test bed on a file
submit Turn in a file

“ [Be careful how you name your files. By the end of the semester, you could easily get lost in a
I sea of files. Spend a few moments thinking of how you will organize all your files as this will

be a useful practice for the remainder of your career.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.0 First Program | Page 15

2. Edit with Emacs

Once the template has been copied to your directory, you are now ready to edit your program. There are
many editors to choose from. Some editors are specialized to a specific task (such as Excel and Photoshop).
The editor we use for programming problems is specialized for writing code. There are many editors you may
use, including emacs and vi. For help with common emacs commands, please see “Appendix D: Linux and
Emacs Cheat Sheet.”

It you would like to write a program in hello.cpp, you can use emacs to edit create and edit the file with:

emacs hello.cpp

This will start emacs with a blank document named hello.cpp. From here you can type anything you like.
However, if you wish this program to function correctly, you need to type valid C+ +. For your first program,
you can make it say “Hello World” as we need to do for the first assignment:

/***

* Program:
* Assignment 10, Hello World
Brother Helfrich, CS124
Author:
Sam Student
Summary:
This program is designed to be the first C++ program you have ever
written. While not particularly complex, it is often the most difficult

to write because the tools are so unfamiliar.
***/

E B I SR G

#include <iostream>
using namespace std;

/**

* Hello world on the screen
***/

int main()

// display
cout << "Hello World\n";

return 0;

}

When you have finished writing the code for your program, save it and exit the editor. To save, first hit the
<control> and x key at the same time, followed shortly with <control> and s. The shorthand for this key

sequence is C-x C-s. You can then exit emacs with c-x ¢-c. More emacs keystokes are presented in Appendix
D at the back of this book.

Page 16 | 1.0FirstProgram | Unit 1: Simple Program | Procedural Programming in C++

3. Compile

After the program is saved in a file, the next step is compilation. Compilation is the process of translating the
program from one format (C++ in this case) to another (machine language). This process is remarkably
similar to how people translate text from French to English. There are four steps:

Lexer

#include

using
namespace
std

H

int

main

0

cout

< iostream >

Parser

statement:
expression
expression:
key << arg;
key:
cout
arg:
“Hello”

Generator

push ebp

mov ebp,esp
sub esp,0Coh
push ebx
push esi
push edi

lea edi,[ebp]
mov ecx,30h
mov eax,0CCC

Linker

ec
8d
cc
ae
ff
co
e5
cc
55
00

co
bd
cc
fa
f
00
5d
cc
8b
00

00 00
40 ff
cc cc
ff £f
b8 01
00 00
c3 cc
cc cc
ec 6a
00 00

00
£
3
e8
00
3b
cc
cc
£f
50

hwl0.cpp

<< 53 56 57 8d bd
"Hello world"

C++ intermediate

assembly machine

Lexer: Lexing is the process of breaking a list of text or sounds into words. When a non-speaker
hears someone speak French, they are not even sure how many words are spoken. This is because they
do not have the ability to lex. The end result of the lexing process is a list of tokens or words, each
hopefully part of the source language.

Parser: Parsing is the process of fitting the words or tokens into the syntax of the language. In
French, that is the process of recognizing which word is the subject, which is the verb, and which is
the direct object. Once the process of parsing is completed, the listener understands not only what the
words are, but what they mean in the context of the sentence.

Generator: After the meaning of the source language is understood through the parsing process, the
next step is to generate text in the target language. In the case of the French to English translation,
this means putting the parsed meaning from the French language into the equivalent English words
using the English syntax. In the case of compiling C++ programs, the end result of this phase is
assembly language similar to what we used in Chapter 0.2.

Linker: The final phase is to output the result from the code generator into a format understood by
the listener. In the case of the French to English translation, that would involve speaking the translated
text. In the case of compiling C++ code, that involves creating machine language which the CPU
will be able to understand.

All four of these steps are done almost instantly with the compiler. The compiler we use in this class is g++.
The syntax is:

g++ <source file>

If, for example, we are going to compile the file hwie.cpp, the following command will need to be typed:

g++ hwle.cpp

If the compilation is successtul, then the file a.out will be created. If there was an error with the program due
to a typographical error, then the compiler will state what the error was and where in the program the error
was encountered.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.0 First Program | Page 17

4. Test Bed

After we have successfully passed the compilation process, it is then necessary to verify our solution. This is
typically done in a two-step process. The first is to simply run the program by hand and visually inspect the
output. To execute a newly-compiled program, type the name of the program in the terminal. Since the
default name of a newly-compiled program is “a.out,” then type:

a.out

The second step in the verification process is to test the program against the key. This is done with a program
called Test Bed. Test Bed compares the output of your program against what was expected. If everything
behaves correctly, a message “No Errors” will be displayed. On the other hand, if the program malfunctions
or produces difterent output than expected, then the difference is displayed to the user. In this way, Test Bed
is a two-edged sword: you know when you got the right answer, but it is exceedingly picky. In other words,
Test Bed will notice if a space was used instead of a tab even though it appears identical on the screen. The
syntax for Test Bed is:

testBed <test name> <file name>

The first parameter to the Test Bed program is the test which is to be run. This test name is always present
on a homework assignment, in-lab test, and project. The second parameter is the file you are testing. If, for
example, your program is in the file hwie.cpp and the test is cs124/assignie, then the following code will be
executed:

testBed c¢sl124/assignl® hwl@.cpp

It is important to note that you will not get a point on a pre-class assignment unless Test Bed passes without
error.

5. Style Checker

Once the program has been written and passes Test Bed, it is not yet finished. Another important component
is whether the code itself is human-readable and in a standard format. This is collectively called “style.” A
programming style consists of many components, including variable names, indentations, and comments.

While style is an inherently subjective notion, we have a tool to help us with the process. This tool is called
Style Checker. While Style Checker will certainly not catch all possible style mistakes, it will catch the most
obvious ones. You should never turn in an assignment without running Style Checker first. The syntax for
Style Checker is:

styleChecker <file name>

If, for example, you would like to run Style Checker on hwie.cpp, then the following command is to be
executed.

styleChecker hwl@.cpp

The main components to style include:

Page 18 | 1.0 FirstProgram | Unit 1: Simple Program | Procedural Programming in C++

VEEISIEIEE Variable names should completely describe what each variable contains. Each
should be camelCased: capitalize the first letter of every word in the name
except the first word. We will learn about variables in Chapter 1.2:

numStudents

JEREEEIBIEINEE Function names are camelCased just like variable names. Function names are
typically verbs while variable names are nouns. We will learn about functions
in Chapter 1.4.

displayBudget()

Indentations are three spaces. No tabs please!

{
cout << "Hello world\n";
}
Line length Lines are no longer than 80 characters in length. If more space is needed for

a comment, break the comment into two lines. The same is true for cout
statements (Chapter 1.1) and function parameters (Chapter 1.4).

// Long comments can be broken into two lines
// to increase readability. Start each new
// line with “//”s

Program All programs have a program comment block at the beginning of the file. This
comments can be found in the standard template. An example is:

[KR KKK R SOK RK SRk s K KR Sk ok K ok

* Program:
* Assignment 10, Hello World
Brother Helfrich, CS124
Author:
Sam Student
Summary:
Display a message
***/

* ¥ X ¥ ¥

Function Every function such as main() has a comment block describing what the
comments function does:

/***

* MAIN

* This program will display a simple message
* on the screen
**/

Space between NIl operators, such as addition (+) and the insertion operator (<<) are to have
operators a single space on either side to set them apart:

sumOfSquares += userInput * userInput;

For more details on the University’s style guidelines, please see “Appendix A: Elements of Style” and look at
the coding examples presented in this class.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.0 First Program | Page 19

6. Submit

The last step of turning in an assignment is to submit it. While we discuss this as the end of the homework
process, you can submit an assignment as often as you like. In the case of multiple submissions, the last one
submitted at the moment the assignment is graded is the one that will be used. It is therefore a good idea to
submit your assignments frequently so your professor has the most recent copy of your work. The syntax for
the program submission tool is:

submit <file name>

If, for example, your program is named “hw1e. cpp,” then the following command is to be executed:

submit hwle.cpp

One word of caution with the Submit tool. The tool reads the program header to determine the professor
name, the class number, and the assignment number. If any of these are incorrect, then the program will not
be submitted correctly. For example, consider the following header:

/***

* Program:
* Assignment 10, Hello World
Brother Helfrich, CS124
Author:
Susan Bakersfield
Summary:
This program is designed to be the first C++ program you have ever
written. While not particularly complex, it is often the most difficult

to write because the tools are so unfamiliar.
**/

* K X X ¥ ¥ ¥

Here, Submit will determine that the program is an Assignment (as opposed to a Test or Project), the
assignment number is 10, the professor is Br. Helfrich, and the class is cs 124. If any of these are incorrect,

then the file will be sent to another location. To help you with this, submit tells the user what it read from
the header:

submit homework to helfrich cs124 and assignl@. (y/n)

It is worthwhile to read that message.

Submit is basically a fancy copy function. It makes two copies of the program: one for
you and one for the instructor. If, for example, you submitted to “Assignment 10” for
“CS 1247, then you will get a copy on.

/home/<username>/submittedHomework/cs124_assignl®.cpp

Observe how the name of the file is changed to that of the assignment and class name. The second copy
gets sent to the instructor. Here the filename is changed to the login ID. If, for example, your login is
“eniac”, then the file appears as eniac.cpp in the instructor’s folder.

Please do not use a dot in the name of your file. If you submit hwi.e.cpp, for example, then it will
appear as eniac.@ instead of eniac.cpp and the instructor will not grade it

Page 20 | 1.0 FirstProgram | Unit 1: Simple Program | Procedural Programming in C++

oun(

w[qoIJ

oS

uonn

A8uareyn

OS[Y 92§

Example 1.0 - Display “Hello World”

This example will demonstrate how to turn in a homework assignment. All the tools involved in this
process, including emacs, g++, testBed, styleChecker, and submit, will be illustrated.

Write a program to prompt to display a simple message on the screen. This message will be the classic
“Hello World” that we seem to always use when writing our first program with a new computer

language.

The code

for the solution is:

/***

*
*

*
*
*
*
*
*
*

Program:
Assignment 10, Hello World
Brother Helfrich, CS124
Author:
Sam Student
Summary:

This program is designed to be the first C++ program you have ever
written. While not particularly complex, it is often the most difficult

to write because the tools are so unfamiliar.
**/

#include <iostream>
using namespace std;

/**

*

Hello world on the screen

***/
int main()

}

Of course the real challenge is using the tools...

// display
cout << "Hello World\n";

return 0;

As a challenge, modify this program to display a paragraph including your name and a short
introduction. My paragraph is:

Hello, I am Br. Helfrich.

My favorite thing about teaching is interacting with interesting students every
day. Some days, however, students have no questions and don’t bother to come by

my office. Those are long and lonely days...

The complete solution is available at 1-0-firstProgram.cpp or:

/home/cs124/examples/1-0-firstProgram.cpp

Procedural Programming in C++

Unit 1: Simple Programs

1.0 First Program

Page 21

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/1-0-firstProgram.html
https://video.byui.edu/media/1.0+-+First+Program/0_9dc3rb33/18442462

Problem 1

If your body was a computer, select all the von Neumann functions that the spinal cord would perform?
Answer:

Please see page 5 for a hint.

Problem 2

If a given processor were to be simplified to only contain a single instruction, which part would be most
aftected?

Answer:

Please see page 5 for a hint.

Problem 3

Which of the following does a CPU consume? {Natural language, C+ +, Assembly language, Machine }?
Answer:

Please see page 5 for a hint.

Problem 4
What is wrong with the following program:

#include <iostream>
using namespace std;

int main()
(
cout << "Howdy\n";
return 0;
)
Answer:
Please see page 7 for a hint.
Page22 | 1.0FirstProgram | Unit 1: Simple Program | Procedural Programming in C++

Write a program to put the text “Hello World” on the screen. Please note that examples of the code for this
program are present in the course notes.

Example
Run the program from the command prompt by typing a.out.
$a.out
Hello World
$
Instructions
Please...
1. Copy template from: /home/cs124/template.cpp. You will want to use a command like:
cp /home/csl124/template.cpp assignmentl®.cpp
2. Edit the file using emacs or another editor of your choice. For example:
emacs assignmentl@.cpp
3. After you have typed your program, save it and compile with:
g++ assignmentl@.cpp
4. If there are no errors, you can run it with:
a.out
Please verify your solution against test-bed with:
testBed cs124/assignl@ assignmentl@.cpp
5. Check the style to ensure it complies with the University’s style guidelines:
styleChecker assignmentl10.cpp
6.

Turn your assignment in with the submit command. Don’t forget to submit your assignment with

the name “Assignment 10” in the header

submit assignment1@.cpp

Please see page 21 for a hint.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.0 First Program

Page 23

Unit 1. Simple Programs

1.1 Output

Sam is sitting in the computer lab waiting for class to begin. He is bored, bored, bored! Just for kicks, he
decides to dabble in ASCII-art. His first attempt is to reproduce his school logo:

C _\NCVOCHCH D
| Z <\ /))(O
(7 () () ()

Objectives
By the end of this class, you will be able to:

e Display text and numbers on the screen.

e Left-align and right-align text.
e Format numbers to a desired number of decimal places.

Prerequisites

Before reading this section, please make sure you are able to:

e Type the code for a simple program (Chapter 0.2).
e Recite the major parts of a computer program (statements, headers, etc.) (Chapter 0.2).
e Use the provided tools to complete a homework assignment (Chapter 1.0).

Overview of Output

There are two main methods for a computer to display output on the screen. The first is to draw the output
with dots (pixels), lines, and rectangles. This is the dominant output method used in computer programs
today. Any windowing operating system (such as Microsoft Windows or Apple Macintosh) favors programs
using this method. While this does give the programmer maximum freedom to control what the output looks
like, it is also difficult to program. There are dozens of drawing toolsets (OpenGL, DirectX, Win32 to name
a few), each of which requires a lot of work to display simple messages.

The second method is to use streams. Streams are, in many ways, like a typewriter. An individual typing on
a typewriter only needs to worry about the message that is to appear on the page. The typewriter itself knows
how to render each letter and scroll the paper. A programmer using streams to display output specifies the
text of the message as well as simple control commands (such as the end of the line, tabs, etc.). The operating
system and other tools are left to handle the mechanics of getting the text to render on the screen. We will
use stream output exclusively in CS 124.

Page24 | 1.1Output | Unit1: Simple Program | Procedural Programming in C++

http://www.ascii-art.de/ascii/

COUT

As previously discussed, computer programs are much like recipes: consisting of a list of instructions necessary
to produce some output. These instructions are called statements. One of the fundamental statements in the
C+ + language is cout: the statement that puts text on the screen. The syntax of cout is:

cout stands for Console OUTput or When displaying generic text,
putting text on the screen. This we can write whatever we
keyword appears at the beginning of want as long as we include it
each output statement. in quotes.

[cout][<<||"cs 124"[;

Following cout and separated by a space on each The final component
side, the insertion operator (<<) indicates that of a statement is the
the text on the right-side ("CS 124" in this case) semicolon. This is
is to be sent to the keyword (cout in this case) required in all C++
on the left-side. If the insertion operator looks statements. In many
like an arrow, it is not a coincidence; data flows ways, this acts like a
from the right-side ("CS 124") to the left-side period in the English
(the screen or console). language.

When you put this all together the above statement says “Put the text "cs 124" on the screen.”

Displaying Numbers

Up to this point, all of our examples have been displaying text surrounded by double quotes. It is also possible
to use cout to display numbers. Before doing this, we need to realize that computers treat integers (numbers
without decimals) fundamentally differently than real numbers (numbers with decimals).

We can display an integer by placing the number after an insertion operator in a cout statement.

cout << 42;

Because this number is an integer, it will never be displayed with a decimal. On the other hand, if we are
displaying a real number, then we add a decimal in the text:

cout << 3.14159;

In this example, the computer is not sure how many decimals of accuracy the programmer meant. To be clear
on this point, it is useful to include the following code before displaying real numbers:

cout.setf(ios::fixed); // no scientific notation please
cout.setf(ios: :showpoint); // always show the decimal for real numbers
cout.precision(2); // two digits after the decimal

The first statement means we never want to see the number displayed in scientific notation. Unless the number
is very big or very small, most humans prefer to see numbers displayed in “fixed” notation. The second
statement indicates that the decimal point is required in all presentations of the number. The final statement
indicates that two digits to the right of the decimal point will be displayed. We can specify any number of
digits of course. Note that there is some interplay between these three statements; usually we use them
together. These settings are “sticky.” This means that once the program has executed these lines of code, all
real numbers will be treated this way until the setting is changed again.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.1 Output | Page 25

New Lines

Often the programmer would like to indicate that the end of a line has been reached. With a typewriter, one
hits the Carriage Return to jump to the next line; it does not happen automatically. The same is true with
stream output. The programmer indicates a newline is needed using two methods:

Both of these mean the same
thing. They will output a new line
to the screen.

cout <<|endl
cout <<|["\n"

The first method is called end1, short for “end of line.” This does not appear in quotes. Whenever a statement
is executed with an endl, the cursor jumps down one line and moves to the left. The same occurs when the
“\n” is encountered. Note that the \n must be in quotes. There can be many \n’s in a single run of text.

Observe that we have two different ways (endl and \n) to do the same thing. Which is best?

endl \n

Inside quotes cout << "Hello"; cout << "Hello\n";
cout << endl;
Not inside quotes cout << 5; cout << 5;
cout << endl; cout << "\n";
Use When the previous item in the Most convenient when you want a
output stream is not in quotes, use newline and are already inside
the endl. quotes.

The Insertion Operator

As mentioned previously, the insertion operator (<<) is the C+ + construct that allows the program to indicate
which text is to be sent to the screen (through the cout keyword). It is also possible to send more than one
item to the screen by stacking multiple insertion operators:

cout << "I am taking "

<< "CS 124 "
<< "this semester.\n";

By convention we typically align the insertion operators so they line up on the screen and are therefore easier
to read. However, we may wish to put them in a single line:

cout << "I am taking " << "CS 124 " << "this semester.\n";

Both of these statements are exactly the same to the compiler; the difference lies in how readable they are to
a human. There are three common reasons why one would want to use more than one insertion operator:

Page26 | 1.1Output | Unit1: Simple Program | Procedural Programming in C++

Reason Example Explanation

Line Limit cout << "I Wa“'{ to Take °“eh" Style checker limits the length of a line to

<< "very long line much " .

<< “more manageable.\n"; 80 cl}ara§ters. 'It is often necessary to use.
multiple insertion operators to keep within

this limit.
Mixing cout << ;{Z‘ix text with * Variables need to be outside quotes,
<< . e . .
<< " numbers.\n"; requiring separate insertion operators for
. >
each one.
Comments cout << "Cs124® // class Comments are more meaningful when they
<< "-1-" // section 0
X Bob i pron: are on the same line as to what they are
clarifying.

Alignment

It is often desirable to make output characters align in columns or tables. This is particularly useful when
working with columns of numbers. In these cases, we have two tools at our disposal: tabs and set-width.

Tabs

When the typewriter was invented, it quickly becomes apparent that typists needed a convenient way to align
numbers into columns. To this end, the tab key (also known as the tabular key) was invented. The tab key
would skip the carriage (or cursor in the computer world) to the next tab stop. In the case of mechanical
typewriters, tab stops were set every half inch. This meant that hitting the tab key would move the cursor to
the next half inch increment. Sometimes this meant moving forward one space, other times the full half inch.
The tab command (\t) in cout behaves exactly the same way as a typewriter. Each time the \t 1s encountered
in textual data, the cursor moves forward to the next 8 character increment. Consider the following text:

cout << "\tOne\n";

cout << "Deux\tDeux\n";
cout << "\t\tTres\n";

The output from these statements is:

One
Dieuix Dieuix

Trieis

Observe how the word “one” is indented eight spaces. This is because the cursor started in the 0 column and,
when the tab key was encountered, skipped to the right to the next tab stop (the 8 column).

The first word “Deux” is left aligned because, after the \n is encountered in the previous line, the cursor moves
down one line and to the 0 column. After the first “Deux”, the cursor is on the 3 column. From here the cursor
skips to the next multiple of 8 (in this case the 8 column) when the tab is encountered. This makes the “one”
and “Deux” left-aligned.

When the third statement is executed, the first tab moves the cursor to the 8 column. The second tab moves
the cursor to the next multiple of 8 (the 16 column). From here, the text “Tres” is rendered.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.1 Output | Page 27

Set Width

Tabs work great for left-aligning text. However, often one needs to right-align text. This is performed with
the set width command. Set width works by counting backwards from a specified numbers of spaces so the
next text in the cout statement will be right-aligned. Consider the following code:

cout << setw(9) << "set\n";
cout << setw(9) << "width\n";

The first statement will start at column zero, move 9 spaces to the right (by the number specified in the
parentheses), then count to the left by three (the width of the word “set”). This means that the text “set” will
start on column 6 (9 as specified in the setw(9) function minus 3 by the length of the next word). The next
statement will again start at column zero (because of the preceding \n), move 9 spaces to the right, then
count to the left by five (the width of the word “width”). This means that the text “width” will start on
column 4 (9 minus 5). As a result, the two words will be right-aligned.

One final note: the setw() function is in a different library which needs to be included. You must #include
the iomanip library:

#include <iomanip>

IllllIllIlIlIlllllllIlIllllIIlllIIlllllIlllllllllllllllIIIIIEEEEHHEEEEEI!IIIIII

It turns out that there are many other formatting options available to programmers.
You can output your numbers in hexadecimal, unset formatting flags, and pad with periods
rather than spaces. Please see the following for a complete list of the options:

http://en.cppreference.com/w/cpp/io/ios base.

Using Tabs and Set Width Together

Tabs and set width are commonly used together when displaying columns of figures such as money. Consider
the following code:

#include <iostream> // required for COUT
#include <iomanip> // we will use setw() in this example
using namespace std;

int main()
{
// configure the output to display money
cout.setf(ios::fixed); // no scientific notation except for the deficit
cout.setf(ios::showpoint); // always show the decimal point
cout.precision(2); // two decimals for cents; this is not a gas station!

// display the columns of numbers

cout << "\t$" << setw(1@) << 43.12 << endl;
cout << "\t$" << setw(1@) << 115.2 << endl;
cout << "\t$" << setw(1@) << 83299.3051 << endl;

return 0;

}

In this example, the output is:

$ 43.12
$ 115.20
$ 83288.31

Page28 | 1.1Output | Unit1: Simple Program | Procedural Programming in C++

http://en.cppreference.com/w/cpp/io/ios_base

Observe how the second row displays two decimals even though the code only has one. This is because of the
cout.precision(2) statement indicating that two decimals will always be used. The third row also displays two
decimal places, rounding the number up because the digit in the third decimal place is a 5.

It is helpful to first draw out the output on graph paper so you can get the column widths
correct the first time. When the output is complex (as it is for Project 1), aligning columns
can become frustrating.

Special Characters
As mentioned previously, we always encapsulate text in quotes when using a cout statement:

cout << "Always use quotes around text\n";

There is a problem, however, when you actually want to put the quote mark (") in textual output. We have
the same problem if you want to put the backslash \ in textual output. The problem arises because, whenever
cout sees the backslash in the output text, it looks to the next character for instructions. These instructions are
called escape sequences. Escape sequences are simply indications to cout that the next character in the
output stream is special. We have already seen escape sequences in the form of the newline (\n) and the tab
(\t). So, back to our original question: how do you display the quote mark without the text being ended and
how do you display \n without a newline appearing on the screen? The answer is to escape them:

cout << "quote mark:\" newline:\\n" << endl;

When the first backslash is encountered, cout goes into “escape mode” and looks at the next character. Since
the next character is a quote mark, it is treated as a quote in the output rather than the marker for the end of
the text. Similarly, when the next backslash is encountered after the newline text, the next backslash is treated
as a backlash in the output rather than as another character. The output of the code would be:

quote mark:" newline:\n
Up to this point, the following are the escape sequences we can use:

Name Character
New Line

Tab

Backslash

Double Quote

Single Quote

There are many other lesser known and seldom used escape characters as well:

https://msdn.microsoft.com/en-us/library/h21280bw.aspx

Procedural Programming in C++ | Unit 1: Simple Programs | 1.1 Output | Page 29

https://msdn.microsoft.com/en-us/library/h21280bw.aspx

Example 1.1 - Money Alignment

This example will demonstrate how to use tabs and setw() to align money. This is important in
Assignment 1.1, Project 1, and many output scenarios.

Write a program to output a list of numbers on a grid so they can be easily read by the user.

$ 124.45 $ 321.31
$ 1.74 $ 4.2
$ 7439.12 $ 54.92

7 spaces 1 tab 7 spaces

wo[qoIJ ouwnq

The first part of the solution is to realize that all the numbers are displayed as money. This requires us
to format cout to display two digits of accuracy.

cout.setf(ios::fixed); // no scientific notation
cout.setf(ios: :showpoint); // always show the decimal point
cout.precision(2); // two digits for money

After the leading $ the text is right-aligned to seven spaces. This will require code something like:
cout << "$" << setw(7) << 124.45; // numbers not in quotes!
Following the first set numbers, we have another column separated by a tab.

cout << "\t";

»

=

=@ Next, another column of numbers just like the first.

it o

©

=) cout << "$" << setw(7) << 321.31; // again, the numbers are not in quotes

Finally, we end with a newline
cout << endl; // instead, we could say "\n"
Put it all together:
// display the first row
cout << "g"

<< setw(7) << 124.45
<< " \t$"
<< setw(7) << 321.31
<< endl;

9 As a challenge, try to increase the width of each column from 7 spaces to 10. How does this change the

Ml space between columns? Can you add a third column of numbers?

a—y

B Finally, what is the biggest number you can put in a column before things start to get “weird.” What

% happens when the numbers are wider than the columns?

"<l The complete solution is available at 1-1-alignMoney.cpp or: (e

o

E /home/cs124/examples/1-1-alignMoney.cpp

[72]

©

Page30 | 1.1Output | Unit1: Simple Program | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/1-1-alignMoney.html
https://video.byui.edu/media/1.1+-+Money+Alignment/0_ntt84ojr/18442462

Example 1.1 - Escape Sequences

@ This example will demonstrate how to display special characters on the screen using escape sequences.
g Not only will we use escape sequences to get tabs and newlines on the screen, but we will use escapes
SA to display characters that are normally treated as special.
Write a program to display all the escape sequences in an easy-to-read grid.
The escape sequences are:
e Newline \n
3 Tab \t
o Slash \\
g SQuote \'
DQuote \"
lab 9 spaces
We need to start by noting that there are six lines in the output so we should expect to use six \n escape
sequences. If we do not end each line with a newline, then all the text will run onto a single line.
Next, there needs to be a tab before each of the five lines in the list. This will be accomplished with a \t
escape sequence. Each of the slashes in the escape sequence will need to be escaped. Consider the
tollowing code:
cout << "\tNewline \n\n";
This will result in the following output:
» Newline
C
g
g Notice how the “\n” was never displayed and we have an extra blank line. Instead, the following will be
= necessary:
cout << "\tNewline \\n\n";
Here, after the “Newline” text, the first “\” will indicate that the second is not be treated as an escape.
The end result will display a \ on the screen. Next the “n” will be encountered and displayed. The final
“\” will indicate the following character is to be treated special. That character, the “n” will be interpreted
as a newline.
The final challenge is the double quote at the end of the sequence. It, tool, will need to be escaped or
the compiler will think we are ending a string.
@ As a challenge, try to reverse the order of the text so the escape appears before the label. Then try to
= . . _
2 right-align the label using setw():
g \n Newline
o9 \t Tab
<l The complete solution is available at 1-1-escapeSequence.cpp or: Ty o
o
E /home/cs124/examples/1-1-escapeSequence.cpp %
2]
)

Procedural Programming in C++ | Unit 1: Simple Programs | 1.1 Output | Page 31

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/1-1-escapeSequences.html
https://video.byui.edu/media/1.1+-+Escape+Sequences/0_y7d7fn6b/18442462

Write the code to put a newline on the screen:

Answer:

Please see page 26 for a hint.

Problem 2

How do you right-align numbers in C+ +?

5
555

Answer:

Please see page 28 for a hint.

Problem 3

{

cout << "\ta\n";
cout << "a\ta\n";

}
Answer:

If the tab stops are set to 8 spaces, what will be the output of the following code?

Please see page 27 for a hint.

Problem 4

JAVAVAY
\/\/\/

Answer:

Write the code to generate the following output:

Please see page 29 for a hint.

Page32 | 1.1Output | Unit1: Simple Program

Procedural Programming in C++

Problem 5

What is the output of the following code?
{
}

Answer:

cout << "\t1\t2\t3\n\t4\t5\t6\n\t7\t8\t9\n";

Please see page 29 for question.

Problem 6

I am taking
"CS 124"

Note that there is a tab at the start of the second line.
Answer:

Write a program to put the following text on the screen:

Please see page 27 for a hint.

Problem 7

Write the code to generate the following output:

Bill:
$ 10.00 - Price
$ 1.50 - Tip
$ 11.50 - Total
Answer:

Please see page 30 for a hint.

Procedural Programming in C++ |

Unit 1: Simple Programs

1.1 Output | Page 33

Write a program to output your monthly budget:

Income $1000.00

Taxes $100.00
Tithing $100.00
Living $650.00
Other $90.00
Example
Item Projected
Income $ 1000.00
Taxes $ 100.00
Tithing $ 100.00
Living $ 650.00
Other $ 90.00
Delta § 60.00
Instructions

Please note:

e There is a single tab at the start of each line, but nowhere else.

e There are 13 *=’s in the first column, 10 in the second. There are 2 spaces between the columns.

e The spacing between the ‘¢’ and the right edge of the money is 9.

e You will need to set the formatting of the prices with the precision() command.

e Please display the money as a number, rather than as text. This means two things. First, the
numbers should be outside the quotes (again, see the example above). Second, you will need to
use the setw() function to get the numbers to line up correctly.

e Please verify your solution against:

testBed cs124/assignll assignmentll.cpp

Don’t forget to submit your assignment with the name “Assignment 117 in the header.

Please see page 30 for a hint.

Page34 | 1.1Output | Unit1: Simple Program | Procedural Programming in C++

Unit 1. Simple Programs

1.2 Input & Variables

Sue is excited because she just got a list of ancestor names from her grandmother. Finally, she can get some
traction on her genealogy work! Unfortunately, the names are in the wrong order. Rather than being in the
tormat of [LastName, FirstName Middlelnitial], they are [FirstName Middlelnitial LastName]. Instead of
retyping the entire list, Sue writes a program to swap the names.

Objectives
By the end of this class, you will be able to:
e Choose the best data-type to represent your data.

e Declare a variable.
e Accept user input from the keyboard and store it in a variable.

Prerequisites

Before reading this section, please make sure you are able to:

e Type the code for a simple program (Chapter 0.2).
e Use the provided tools to complete a homework assignment (Chapter 1.0).
e Display text and numbers on the screen (Chapter 1.1).

Overview
Variables in computer languages are much like variables in mathematics:

Varviables are o named location where we store data

There are two parts to this definition. The first part is the name. We always refer to variables by a name which
the programmer identifies. It is always worthwhile to make the name as unambiguous as possible so it won’t
get confused with other variables or used later in the program. The second part is the data. A wide variety of
data-types can be stored in a variable.

Variables

All the data in a computer is stored in memory. This memory consists of collections of 1’s and 0’s which are
meant to represent numbers, letters, and text. There are two main considerations when working with
variables: how to interpret the memory into something (like the number 3.8 or the text “Computer Science”),
and what that something means (like your GPA or your major).

There is no intrinsic meaning for these 1’s and 0’s; they could mean or refer to just about anything. It is
therefore the responsibility of the programmer to specify how to interpret these 1’s and 0’s. This is done
through the data-type. A data-type can be thought of as a formula through which the program interprets the
I’s and 0’s in memory. An integer number, for example, is interpreted quite differently than a real number or
a letter. Every computer has a built-in set of data-types facilitating working with text, numbers, and logical
data. C++ facilitates these built-in data-types with the following type names:

Procedural Programming in C++ | Unit 1: Simple Programs | 1.2 Input & Variables | Page 35

Data-type Use Size Range of values

bool Logic 1 true, false

char Letters and symbols 1 -128 to 127 ... or'a,'b', etc.

short Small numbers, Unicode characters 2 -32,767 to 32,767

int Counting 4 -2 billion to 2 billion

long (long int) Targer Numbers 8 +9.223.372,036,854,775,808
float Numbers with decimals 4 107 to 10 accurate to 7 digits
double Larger numbers with decimals 8 107 to 10°* accurate to 15 digits
long double Huge Numbers 16 10** to 10*** accurate to 19 digits

Thus when you declare a variable to be an integer (int), the 1’s and 0’s in memory will be
interpreted using the integer formula and only integer data can be stored in the variable.

Under the covers, all data in a computer is represented as a charge stored in a very small
capacitor on a chip. We call these bits, 1 indicating “true” (corresponding to a charge in the
capacitor) and 0 corresponding to “false” (corresponding to no charge). Bits are stored differently on
CDs, flash memory, and hard drives.

Integers

Integers are possibly the most commonly used data-type. Integers are useful for counting or for numbers that
cannot have a decimal. For example, the number of members in a family is always an integer; there can never
be 2.4 people in a family. You can declare a variable as an integer with:

int age = 42;

With this line of code, a new variable is created. The name is “age” which is how the variable will be referenced
for the remainder of the program. Since the data-type is an integer (as specified by the int keyword), we
know two things. First, the amount of memory used by the variable is 4 bytes (1 byte equals 8 bits so it takes
a total of 32 bits to store one integer). Second, the value of the variable age must be between -2,147,483,648
and 2,147,483,647. Observe how the integer is initialized to the value of 42 in this example. ;

w

It is easiest to explain how integers are stored in memory by considering a special integer that
is only positive and has 8 bits (this is actually an unsigned char). In this case, the right-most bit
correspond to the I’s place, the next corresponds to the 2’s place, the next corresponds to the 4’s place,
and so on. Thus the bits (00101010) is interpreted as:

27 2° 2° 2* 23 2? 2! 2°
0 0 1 0 1 0 1 0
0O +0+ 32+0+ 8+ 0+ 2 + 0=42

In other words, each place has a value corresponding to it (as a power of two because we are counting
in binary). You add that value to the sum only if there is a 1 in that place. Typically integers are 32 bits
(4 bytes) in length. The left-most bit is special, indicating whether the number is positive or negative.

I

Page 36 | 1.2Input & Variables | Unit 1: Simple Program | Procedural Programming in C++

Floating point numbers

In mathematics, real numbers are numbers that can have a decimal. It is often convenient to represent very
large or very small real numbers in scientific notation:

1888 = 1.888 x 103

Observe how the decimal point position is specified by the exponent (10 in this case). In many ways, the
decimal point can be said to “float” or move according to the exponent, the origin of the term “floating point
numbers” in computer science. Floating point numbers are characterized by two parts: the precision part of
the equation (1.888 in the above example) and the exponent (10°). There are three floating point types
available in the C+ + language:

Type name Memory used Exponent Precision

float 4 10% to 10% 7 digits

double 8 10°% to 10° 15 digits

long double B 10%% t0 10%% 19 digits
Observe how the more data is used (measured in bytes), the more accurately the number can be represented.
However, all floating point numbers are approximations. Examples of declaring floating point numbers
include:

float gpa = 3.9;
double income = 103295.05;
long double pi = 3.14159265358979323;

While it is wasteful to use a larger data-type than is strictly necessary (who would ever want
their GPA to be represented to 19 digits?), it is much worse to not have sufticient room to store
a number. In other words, it is a good idea to leave a little room for growth when declaring a
floating point number.

Characters

Another common data-type is a character, corresponding to a single letter, number, or symbol. We declare a
character variable with:

char grade = 'A';

When making an assignment with chars, a single * is used on each side of the character. This is different than
the double quotes " used when denoting text. Each character in the char range has a number associated with
it. This mapping of numbers to characters is called the ASCII table:

PSS 46 47 48 49 50 .. 65 66 67 68 .. 97 98 99 100

Y 0 1 2 A B c D a b c d

The complete ASCII table can be viewed in a variety of web sites:

http://en.cppreference.com/w/cpp/language/ascii

Procedural Programming in C++ | Unit 1: Simple Programs | 1.2 Input & Variables | Page 37

http://en.cppreference.com/w/cpp/language/ascii

The char data-type is actually a form of integer where the size is 1 byte (or 8 bits). This
means there are only 256 possible values, not four billion. Each number in the char range

corresponds to a glyph (letter, number, or symbol) in the ASCII table. Thus you can treat a char like a
letter or you can do math with it like any other integer. For example, 'A* + 1 is the same as 'B', which
is 66.

Text

Text consists of a collection or string of characters. While all the data-types listed below can readily fit into a
small slot in memory, text can be exceedingly long. For example, the amount of memory necessary to store
your name is much less than that required to store a complete book. You declare a string variable with:

char text[256] = "CS 124";

There are a few things to observe about this declaration. First, the size of the buffer (or number of available
slots in the string) is represented in square brackets []. The programmer specifies this size at compile time
and it cannot be changed. The second thing to note is how the contents of the string are surrounded in double
quotes " just as they were with our cout examples.

The standard size to make strings is 256 characters in length. This is plenty long enough for
most applications. It is usually more convenient (and bug-free) to have the same string length
for an entire project than to have many different string bufter sizes (which would require us to
keep track of them all!).

Logical Data

The final built-in data-type is a bool. This enables us to capture data having only two possible values. For
example, a person is either pregnant or not, either alive or not, either male or not, or either a member of the
church or not. For these data-types, we use a bool:

bool isMale = false;

There are only two possible values for a bool: true or false. By convention, we name bool variables in such a
way that we know what true means. In other words, it would be much less helpful to have a variable called
gender. What does false mean (that one /as no gender like a rock)? :

w

A bool takes a single byte of memory, consisting of 8 bits. Note that we really only need a
single bit to capture Boolean (true/false) data. Why do we need 8 then? This has to do with

how convenient it is for the computer to work with bytes and how awkward it is to work with bits.
When evaluating a bool, any 1’s in any of the bits will result in a true evaluation. Only when all 8 bits
are 0 will the bool evaluate to false. This means that there are 255 true values (2° — 1) and 1 false
value.

Page 38 | 1.2Input & Variables | Unit 1: Simple Program | Procedural Programming in C++

Input

Now that we know how to store data in a computer program using variables, it is possible to prompt the user
tor input. Note that without variables we would not have a place to store the user input so asking the user
questions would be futile. The main mechanism with which we prompt users for input is the cin function.
This function, like cout, is part of the iostream library. The code for prompting the user for his age is:
{
int age;
cin >> age;

}
In this example, we first declare a variable that can hold an integer. There are a couple important points here:

e Use cin rather than cout. This refers to Console INput, analogous to the Console OUTput of cout.

e The extraction operator >> is used instead of the insertion operator <<. Again, the arrow
points the direction the data goes. In this case, it goes from the keyboard (represented by cin) to the
variable (represented by age).

e There is always a variable on the right side of the extraction operator.

We can use cin with all built in data-types:

{

// INTEGERS

int age; // integers can only hold digits.

cin >> age; // if a non-digit is entered, then age remains uninitialized.

// FLOATS

double price; // able to handle zero or many digits

cin >> price;

// SINGLE LETTERS

char letter; // only one letter of any kind

cin >> letter; // anything but a white-space (space, tab, or newline).

cin.get(letter); // same as above, but will also get white-spaces

// TEXT

char name[256]; // any text up to 255 characters in length

cin >> name; // all user input up to the first white-space is accepted
}

Procedural Programming in C++ | Unit 1: Simple Programs | 1.2 Input & Variables | Page 39

A stream (the input from the keyboard into cin) can be thought of as a long list of characters
moving from the keyboard into your program. The question is: how much input is consumed by a
single cin statement? Consider the following input stream:

[4]2]cfef[1]s[ifJuls]| |
And consider the code:

int temperature;
char units[256];
cin >> temperature;
cin >> units;

In this example, the input stream starts at the space before the 4. The first thing that happens is that all
the white-spaces are skipped. This moves the cursor to the 4. Since a 4 is a digit, it can be put into the
integer temperature. Thus the value in temperature is 4 and the cursor advances to the next spot. From
here, 2 is recognized as a digit so the 4 value in temperature becomes 40 and 2 is added to yield 42. Again
the cursor is advanced. At this point, ¢ is not a digit so we stop accepting input in the variable
temperature. The next cin statement is executed which accepts text. Recall that text accepts input up to
the first white-space. Since the cursor is on the ¢, the entire word of “celsius” will be put in the units
variable and the cursor will stop at the white-space.

Multiple Extraction Operators

Often it is convenient to input data into more than one variable on a single input statement. This can be done
by “stacking” the extraction operators much like we stacked the insertion operators:

{

char name[256];

int age;

cin >> name >> age;
}

In this example, the first thing the user inputs will be put into the name variable and the second into age.

Whole Lines of Text

Recall how, when reading text into a variable using cin, only one word (or more accurately the characters
between white-spaces) are entered. What do you do when you want to enter an entire line of text includng
the spaces? For this scenario, a new mechanism is needed:

{

char fullName[256]; // store an individual’s full name: Dr. Drake Ramoray
cin.getline(fullName, 256);

}

Observe how we do not use the extraction (>>) operator which was part of our other input mechanisms. The
getline function takes two parameters: the name of the variable (fullName in this example) and the length of
the buffer (256 because that is how large fullName was when it was defined).

Page 40 | 1.2 Input & Variables | Unit 1: Simple Program | Procedural Programming in C++

oun(

uonnjos wo[qoIJ

osTy 395 foSuarreyn

Example 1.2 - Many Prompts

This example will demonstrate how to declare text, integer, floating point, and character variables. It
will also demonstrate how to accept data from the user with each of these data types.

Write a program to prompt the user for his first name, age, GPA, and the expected grade in CS 124.
The information will then be displayed on the screen.

What is
What is
What is

your first name: Sam
your age: 19
your GPA: 3.91

What grade do you hope to get in CS 124: A

Sam, you are 19 with a 3.9 GPA. You will get an A.

The four variables are declared as follows:

char name[256];

int age;

float gpa;
char letterGrade;

To prompt the user for his age, it is necessary to display a prompt first so the user knows what to do.
Usually we precede the prompt and the input with a comment and blank line:

// Prompt the user for his age

cout <<
cin >>

"What is your age: ";
age;

Finally, we must not forget to format cout to display one digit after the decimal.

// configure the display to show GPAs: one digit of accuracy

cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(1);

// display the results

cout <<
<<
<<
<<
<<

"\t" << name

", you are " << age

with a " << gpa

" GPA. You will get an " << letterGrade

u.\nu;

As a challenge, try to accept an individual’s full name (Such as “Sam S. Student”) rather than just the

first name.

Also, try to configure the output to display two digits of accuracy rather than one.

The complete solution is available at 1-2-manyPrompts.cpp or:

/home/cs124/examples/1-2-manyPrompts.cpp

Procedural Programming in C++ | Unit 1: Simple Programs

1.2 Input & Variables

Page 41

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/1-2-manyPrompts.html
https://video.byui.edu/media/1.2+-+Many+Prompts/0_yo46ybz7/18442462

Problem 1

What is the output of the following line of code?
cout << "\\\"/\n";

Answer:

Please see page 29 for a hint.

Problem 2

How do you put a tab on the screen?

Answer:

Please see page 27 for a hint.

Problem 3

How do you output the following:
You will need to use '\n' a ton in this class.

Answer:

Please see page 29 for a hint.

Problem 4

How do you declare an integer variable?

Answer:

Please see page 36 for a bint.

Problem 5

How would you declare a variable for each of the following?
yearBorn
gpa
nameStudent

ageStudent

Please see page 36 for a hint.

Page42 | 1.2Input& Variables | Unit 1: Simple Program | Procedural Programming in C++

Problem 6

Declare a variable to store the ratio of feet to meters.

Answer:

Please see page 37 for a hint.

Problem 7

What is the number of bytes for each data type?
{

cout << sizeof(char) << endl;

char a;
cout << sizeof(a) << endl;

cout << sizeof(bool) << endl;

int b;
cout << sizeof(b) << endl;

float c;
cout << sizeof(c) << endl;

double d;
cout << sizeof(d) << endl;

long double e;
cout << sizeof(e) << endl;

Please see page 36 for a hint.

}
Problem 8

Which of the following can store the largest number?

bool value;

char value[256];
int value

long double value;

Problem 9

Declare a variable to represent the following number in C++: 8,820,198,883,463.39
Answer:

Please see page 36 for a hint.

Please see page 37 for a hint.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.2 Input & Variables | Page 43

Problem 10

Write the code to prompt a person for his first name.

Answer:

Please see page 39 for a hint.

Problem 11

Write the code to prompt a person for his two favorite numbers.

Answer:

Please see page 39 for a hint.

Problem 12

Write the code to prompt a person for his full name.

Answer:

Please see page 40 for a hint.

Page 44 | 1.2Input & Variables | Unit 1: Simple Program | Procedural Programming in C++

Write a program that prompts the user for his or her income and displays the result on the screen. There
will be two parts:

Get Income

The first part is code that prompts the user for his income. It will ask the user:

Your monthly income:

There will be a tab before “your” and a single space after the “:”. There is no newline at the end of this
prompt. The user will then provide his or her income as a float.

Display

The second part is code to display the results to the screen.

Your income is: $ 1010.99

Note that there is one space between the colon and the dollar sign. The money is right aligned to 9 spaces
from the dollar sign.

Example

User input is underlined. Note that you will not be making the input underlined; this is just the notation
used in the assignments to distinguish input from output.

Your monthly income:_932.16

Your income is: $ 932.16

Instructions

Please verify your solution against:

testBed cs124/assignl2 assignmentl2.cpp

Don’t forget to submit your assignment with the name “Assignment 12” in the header.

Please see page 41 for a hint.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.2 Input & Variables | Page 45

Unit 1. Simple Programs

1.3 Expressions

Sam once spent a summer working as a cashier in a popular fast-food outlet. One of his responsibilities was
to make change for customers when they paid with cash. While he enjoyed the mental exercise of doing the
math in his head, he immediately started wondering how this could best be done with the computer. After a
tew iterations, he came up with a program to make light work of his most tedious task...

Objectives
By the end of this class, you will be able to:

e Represent simple equations in C+ +.
e Understand the differences between integer division and floating point division.
e See how to use the modulus operator to solve math and logic problems.

Prerequisites

Before reading this chapter, please make sure you are able to:

e Choose the best data-type to represent your data (chapter 1.2).
e Declare a variable (chapter 1.2).
e Display text and numbers on the screen (chapter 1.1).

Overview

Computer programs perform mathematical operations much the way one would expect. There are a few
differences, however, owing to the way computers store numbers. For example, there is no distinction
between integers and floating point numbers in Algebra. This means that dividing one by two will yield a
half. However, in C+ +, integers can’t store the number 0.5 or 2. Also, a variable can update its value in
C++ where in Algebra it remains constant through the entire equation. These challenges along with a few
others makes performing math with C+ + a little tricky.

In C++, mathematical equations are called expressions. An expression is a collection of values and
operations that, when evaluated, result in a single value.

Evaluating Expressions

As you may recall from our earlier discussion of how computers work, a CPU can only perform elementary
mathematical operations and these can only be done one at a time. This means that the compiler must break
complex equations into simple ones for them to be evaluated correctly by the CPU. To perform this task,
things are done in the following order:

1. Variables are replaced with the values they contain

2. The order of operations are honored: parentheses first and assignment last

3. When there is an integer being compared/computed with a float, it is converted to a float just before
evaluation.

Page 46 | 1.3 Expressions | Unit 1: Simple Program | Procedural Programming in C++

Step 1 - Variables are replaced with values

Every variable refers to a location of memory. This memory location is guaranteed to be filled with 1’s and
0’s. In other words, there is a/ways a value in a variable and that value can always be accessed at any time.
Sometimes the value is meaningless. Consider the following example:

{

int number;
cout << number << endl; // the output is different every time because
// the variable number was never initialized

}

Since the variable was never initialized, the value is not predictable. In other words, whoever last used that
particular location in memory left data lying around. This means that there is some random collection of 1’s
and 0’s in that location. We call this state uninitialized because the programmer never got around to assigning
a value to the variable number. All this could be rectified with a simple:

int number = 0;

The first step in the expression evaluation process is to substitute the variables in the expression with the
values contained therein. Consider the following code:

{

int ageHumanYears = 4;
int ageDogYears = ageHumanYears * 7;

by
In this example, the first step of evaluating the last statement is to substitute ageHumanYears with 4.

int ageDogYears = 4 * 7;

Step 2 - Order of Operations

The order of operations for mathematical operators in C+ + is:

Operator Description

O Parentheses

++ - Increment, Decrement

* /% Multiply, Divide, Modulo

+ - Addition, Subtraction

= 4= -= *= /= %= Assign, Add-on, Subtract-from, Multiply onto, Divide from, Modulo from.

This should be very familiar; it is similar to the order of operations for Algebra. There are, of course a few
difterences

Procedural Programming in C++ | Unit 1: Simple Programs | 1.3 Expressions | Page 47

Increment ++

Because it is possible to change the value of a variable in C+ +, we have an operator designed specifically for
the task. Consider the following code:

{

int age = 10;

age++;

cout << age << endl; // the output is 11
}

In this example, the age++ statement serves to add one to the current value of age. Of course, age-- works in
the opposite way. There are two flavors of the increment (and decrement of course) operators: increment
before the expression is evaluated and increment after. To illustrate, consider the following example:

{
int age = 10;
cout << age++ << endl; // the output is 10 and the new value of age is 11

}

In this example, we increment the value of age after the expression is evaluated (as indicated by the age++
rather than ++age where we would evaluate before). Therefore, the output would be 10 although the value of
age would be 11 at the end of execution. This would not be true with:

{
int age = 10;
cout << ++age << endl; // the output is 11 and the new value of age is 11

}

In this case, age is incremented &efore the expression is evaluated and the output would be 11. In short:

X++ ++X

When the + + is after the variable, the When the + + is before the variable,
increment occurs after the expression the increment occurs before the
is evaluated. expression is evaluated.

_ . y = X; B . X += 1;
y = X++; 6x+=1' y = ++X; 6){_){5

Page 48 | 1.3 Expressions | Unit 1: Simple Program | Procedural Programming in C++

Multiplication *

In C++ (and most other computer languages for that matter), the multiplication operator is an asterisk *.
You cannot use the dot operator (ex: .), the multiplication x (ex: X), or put a number next to a variable (ex:
7y) as you can in standard algebra notation.

{

float answerl
int answer2

* 2.3; // the value of answerl is 2.76
3; // the value of answer2 is 6

Division /
Floating point division (/) behaves the way it does in mathematics. Integer division, on the other hand, does

not. The evaluation of integer division is always an integer. In each case, the remainder is thrown away. To
illustrate this, consider the following:

{
int answerl = 19 / 10;
float answer2 = 19.0 / 10.0;
cout << answerl << endl // the output is 1
<< answer2 << endl; // the output is 1.9
}

In this case, the output of the first line is not 1.9 because the variable answer1 cannot store a floating point
value. When 19 is divided by 10, the result is 1 with a remainder of 9. Therefore, answer1 will get the value 1
and the remainder is discarded. To get 1.9, we need to use floating point division.

Modulus %

Recall that integer division drops the remainder of the division problem. What if you want to know the
remainder? This is the purpose of the modulus operator (%). Consider the following code:

{

int remainder = 19 % 10;
cout << remainder; // the output is 9

}

In this case, when you divide 19 by 10, the remainder is 9. Therefore, the value of remainder will be 9 in this
case. For example, consider the following problem:

{
int totalMinutes = 161; // The movie "Out of Africa" is 161 minutes
int numHours = totalMinutes / 60; // The movie is 2 hours long ...
int numMinutes = totalMinutes % 60; // ... plus 41 minutes

}

2==161/60 41 == 161 % 60

161 modulus 60 r.
I |;
120

41

Procedural Programming in C++ | Unit 1: Simple Programs | 1.3 Expressions | Page 49

Assignment =

In mathematics, the equals symbol = is a statement of equality. You are stating that the right-side and the
left-side are the same or balanced. In C+ +, the equals symbol is a statement of assignment. You are specifying
that the evaluation of the right-side is to be assigned to the variable on the left-side. Consider the following
code:

{

int x = 2;

X =X + 1; // the value of x is updated from 2 to 3. We can
} // change the value of variables in C++

The second statement would not be possible in mathematics; there is no value for x where x=x+1 1is true.
However, in C+ +, this is quite straightforward: the right-side evaluates to 3 and the variable on the left is

assigned to that value. It turns out that adding a value to a variable is quite common. So common, in fact,
that a shorthand is offered:

{
int x = 2;
X += 1; // the new value of x is 3

}

The += operator says, in effect, add the right-side to the variable on the left-side. The end result is the x being
updated to the value of 3. The most common variants are:

Operator Description Use

+= Add and assign Add onto

-= Subtract and assign Subtract from
*= Multiply and assign ~ Multiply by
/= Divide and assign Subdivide

Page 50 | 1.3 Expressions | Unit 1: Simple Program | Procedural Programming in C++

Step 3 - Converting

The final step in evaluating an expression is to convert data from one type to another. This arises from the
fact that you can’t add an integer to a floating point number. You can add two ints or two floats, but not an
int to a float. Consider the following code:

cout << 4 + 3.2 << endl;

In this example, there are two possibilities: either convert the integer 4 into the float 4.0 or convert the float
3.2 into the integer 3. C+ + will always convert ints to floats and bools to ints in these circumstances. It is
important to note, however, that this conversion will only happen immediately before the operator is
evaluated.

Casting

Rather than allowing the compiler to convert integers or values from one data type to another, it is often
useful to perform that conversion yourself explicitly. This can be done with casting. Casting is the process of
specifying that a given value is to be treated like another data-type just for the purpose of evaluating a single
expression. Consider the following code:

{
int value = 4;
cout << "float: " << (float)value << endl; // the output is “float: 4.0”
cout << "integer: " << value << endl; // the output is “integer: 4”
}

In this case, the output of the first cout statement will be 4.0 because the integer value 4 will be converted to
a floating point value 4.0 in this expression. The value in the variable itself will not be changed; only the
evaluation of that variable in that particular expression. The second cout statement will display 4 in this case.

There are a few quirks to casting. First, the variable you are casting does not change. Once you declare a
variable as a given data-type, it remains that data-type for the remainder of the program. Casting just changes
how that variable behaves for one expression.

Second, not all data-types covert in the most obvious way. Consider converting ints and bools:

{
bool a = (bool)7; // true any number but @ turns into true
bool b = (bool)o; // false only zero turns to false
int ¢ = (int)true; // 1 true always becomes 1
int d = (int)false; // © false always becomes ©
}

There are actually two notations for casting in C+ +. The older notation, presented above,
was inherited from the C programming language and is somewhat deprecated. It still works, but purists
will prefer the new notation. The new notation for casting has two main variants: static cast
corresponding to casting that happens at compile time, and dynamic cast which happens at runtime.
All the casting we do with procedural C++ can be static. We won’t need to use dynamic casting until
we learn about Object Oriented programming in CS 165.

{
int value = 4;
cout << "float:

<< static_cast<float>(value) << endl;

Procedural Programming in C++ | Unit 1: Simple Programs | 1.3 Expressions | Page 51

Putting it all together

So how does this work together? Consider the following example:

{
int f
int ¢

34;
5.0 / 9 * (f - 32);

}

The most predictable way to evaluate the value of the variable c is to handle this one step at a time:

1. int c =5.0 /9 * (f - 32); // The original statement

2. int ¢ = 5.8 / 9 * (34 - 32); // Step 1. Substitute the value f for 34

3. int c =5.80 /9 * 2; // Step 2. Perform subtraction: 2 == 34 - 32

4. int c=5.0/ 9.0 * 2; // Step 3. Convert 9 to 9.0 for floating point division

5. int ¢ = ©.555556 * 2; // Step 2. Perform floating point division: ©.55555 == 5.0 / 9.0
6. int ¢ = ©.555556 * 2.0; // Step 3. Convert 2 to 2.0 for floating point multiplication

7. int ¢ = 1.111111; // Step 2. Perform multiplication: 1.11111 == 0.555556 * 2.0

8. int c = 15 // Step 3. Convert 1.111111 to the integer 1 for assignment

Seemingly simple expressions can be quite complex and unpredictable when data-type
| conversion occurs. It is far easier to use only one data-type in an expression. In other words,

don’t mix floats and ints!

Page 52 | 1.3 Expressions | Unit 1: Simple Program | Procedural Programming in C++

oun(

w[qoIJ

oS

uonn

osTy 395 foSuarreyn

Example 1.3 - Compute Change

This example will demonstrate how to evaluate simple expressions, how to update the value in a variable,
casting, and how to use modulus.

Write a program to prompt the user for an amount of money. The program will then display the number
of dollars, quarters, dimes, nickels, and pennies required to match the amount.

In this example, the user is prompted for a dollar amount:

// prompt the user

cout << "Please enter a positive dollar amount (ex: 4.23): “;
float dollars;

cin >> dollars;

Next it is necessary to find the number of cents. This is done by multiplying the dollar variable by 100.
Note that dollars have a decimal so they must be in a floating point number. Cents, however, are always
whole numbers. Thus we should store it in an integer. This requires conversion through casting.

// convert to cents
int cents = (int)(dollars * 100.00);

Finally we need to find how many Dollars (and Quarters, Dimes, etc) are to be sent to the user. We
accomplish this by performing integer division (where the decimal is removed).

cout << "Dollars: " << cents / 100 << endl;
After we extract the dollars, how many cents are left? We compute this by finding the remainder after

dividing by 100. We can ask for the remainder by using the modulus operator (cents % 16@). Since we
want to assign the new amount back to the cents variable, we have two options:

cents = (cents % 100);

This is exactly the same as:

cents %= 100;

As a challenge, try to modify the above program so it will not only compute change with coins, but also
for bills. For example, it will display the number of $1’s, $5’s, $10’s, and $20’s.

The complete solution is available at 1-3-computeChange.cpp or: Ty

/home/cs124/examples/1-3-computeChange.cpp

Procedural Programming in C++ | Unit 1: Simple Programs | 1.3 Expressions | Page 53

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/1-3-computeChange.html
https://video.byui.edu/media/1.3+-+Compute+Change/0_glzm3bu0/18442462

Problem 1

® numberStudents:

Please write the variable declaration used for each variable name:

e pi:

® hometown:

® priceApples:

Please see page 36 for questions

Problem 2

How much space in memory does each variable take?

® bool value;

e char value[256];

® char value;

e long double value;

Please see page 36 for questions

Problem 3

a=a+b*c++/ 4

Insert parentheses to indicate the order of operations:

Please see page 47 for a hint.

Problem 4

What is the value of yard at the end of execution?

{
float feet = 7;
float yards = (1/3) feet;
}
Answer:
yards ==

Please see page 49 for a hint.

Page 54 | 1.3 Expressions | Unit 1: Simple Program

Procedural Programming in C++

Problem 5

What is the value of a?
int a = (2 +2)/ 3;

Answer:

a

Please see page 49 for a hint.

Problem 6

What is the value of b?
intb=2/3+1/ 2;

Answer:

Please see page 49 for a hint.

Problem 7

What is the value of c?

int £ = 34;
int c =5/ 9 * (f - 32);

Answer:

C

Please see page 49 for a hint.

Problem 8

What is the value of d?
int d = (float) 1 / 4 * 10;

Answer:

Please see page 51 for a hint.

Procedural Programming in C++

Unit 1: Simple Programs | 1.3 Expressions | Page 55

Problem 9

Write a program to prompt the user for a number of days, and return the number of days and weeks

Example:
How many days: 17
weeks: 2
days: 3

Please see page 49 for a hint.

Problem 10

What is the output?
{
int dateOfBirth = 1987;
int currentYear = 2006;

cout << "age is
<< currentYear++ - dateOfBirth
<< endl;

cout << "age is "

<< currentYear++ - dateOfBirth

<< endl;

Answer:

Please see page 49 for a hint.

Page 56 | 1.3 Expressions | Unit 1: Simple Program | Procedural Programming in C++

Temperature Conversion

Write a program to convert Fahrenheit to Celsius. This program will prompt the user for the Fahrenheit
number and convert it to Celsius. The equation is:

C=5/9(F-32)
The program will prompt the user for the temperature, compute the Celsius value, and display the results.

Hint: If you keep getting zero for an answer, you are probably not taking integer division into account.
Please review the text for insight as to what is going on.

Hint: If the last test fails, then you are probably not rounding correctly. Note that integers cannot hold
the decimal part of a number so they always round down. If you use precision(0), then the rounding will
occur the way you expect.

Example

User input is in underline.

Please enter Fahrenheit degrees: 72
Celsius: 22

Assignment
The test bed is available at:

testBed csl124/assignl3 assignmentl3.cpp

Don’t forget to submit your assignment with the name “Assignment 13” in the header.

Please see page 49 for a hint.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.3 Expressions | Page 57

Unit 1. Simple Programs

1.4 Functions

Sue is working on a large project and is getting overwhelmed. How can she possibly keep all this code straight?
To simplify her work, she decides to break the program into a collection of smaller, more manageable chunks.
Each chunk can be individually designed, developed, and tested. Suddenly the problem seems much more
manageable!

Objectives
By the end of this class, you will be able to:
e Create a function in C+ +.

e Pass data into a function using both pass-by-value and pass-by-reference.
e Be able to identify the scope of a variable in a program.

Prerequisites
Before reading this section, please make sure you are able to:

e Choose the best data-type to represent your data (Chapter 1.2).
e Declare a variable (Chapter 1.2).

Overview

A function is a small part of a larger program. Other terms (procedure, module, subroutine, subprogram, and
method) mean nearly the same thing in the Computer Science context and we will use them interchangeably
this semester.

There are two main ways to look at functions. The first is like a medical procedure. A medical procedure is a
small set of tasks designed to accomplish a specific purpose. Typically these procedures are relatively isolated;
they can be used in a wide variety of contexts or operations. Functions in C++ often follow this procedural
model: breaking large programs into smaller ones.

The second way to look at functions is similar to how a mathematician looks at functions: an operation that
converts input into output. The Cosine function is a great example: input in the form of radians or degrees is
converted into a number between one and negative one. Frequently functions in C+ + follow this model as
programmers need to perform operations on data.

The syntax for both procedures and mathematical functions is the same in C++. The purpose of this chapter
is to learn the syntax of functions so they can be used in our programs. All assignments, projects, and tests in
this class will involve multiple functions from this time forward.

Function Syntax

There are two parts to function syntax: the syntax of declaring (or defining) a function, and the syntax of
calling (or “running”) a function.

Declaring a Function
The syntax of a function is exactly the same as the syntax of main() because main() is a function!

Page 58 | 1.4 Functions | Unit1: Simple Program | Procedural Programming in C++

Output type of the Every function needs a name How data enters
function. by which it will be called. the function.

[<return type>||<function names|(<parameter list>|)

{

<statement list>|
return [<return value>;|

The code to be executed The answer to be returned to the caller
when the function is called. indicating the results of the function.

Consider the following function to convert feet to meters:

/***

* CONVERT FEET TO METERS

* Convert imperial feet to metric meters
***/

double convertFeetToMeters(double feet)

{
double meters = feet * 0.3048;

return meters;

}

Observe the function header. As the number of functions gets large in a program, it becomes increasingly
important to have complete and concise function comment blocks.

Function names are typically verbs because functions do things. Similarly variable names are typically nouns
because variables hold things. As with the function headers, strive to make the function names completely
and concisely describe what the function does.

Finally, observe how one piece of information enters the function (double feet) and one piece of information
leaves the function (return meters;). The input parameter (feet) is treated like any other variable inside the
tunction.

Calling a Function

Calling a function is similar to looking up a footnote in the scriptures. The first step is to mark your current
spot in the reading so you can return once the footnote has been read. The second step is to read the contents
of the footnote. The third is to return back to your original spot in the reading. Observe that we can also
jump to the Topical Guide or Bible Dictionary from the footnote. This requires us to remember our spot in
the footnote as well as our spot in the scriptures. While humans can typically only remember one or two spots
before their place is lost, computers can remember an extremely large number of places.

Computers follow the same algorithm when calling functions as we do when looking up a footnote:

{
double heightFeet = 5.9;
double heightMeters = convertFeetToMeters(heightFeet);

}

In this example, the user is converting his height in feet to the meters equivalent. To accomplish this, the
function convertrFeetToMeters() is called. This indicates the computer must stop working in the calling
function and jump to the function convertFeetToMeters() much like a footnote in the scriptures indicates we
should jump to the bottom of the page. After the computer has finished executing the code in
convertFeetToMeters(), control returns to the calling function.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.4 Functions | Page 59

Example 1.4 - Simple Function Calling

(? This example will demonstrate how call a function and accept input from a function. There will be no
g parameter passing in this example.

Wl Write a program to ask a simple question and receive a simple answer. This problem is inspired from
§_‘ one of the great literary works of our generation.

o What is the meaning of life, the universe, and everything?

3 The answer is: 42

The first function will return nothing. Hence, it will have the obvious name:

/**

* RETURN NOTHING

* This function will not return anything. Its only purpose is
* to display text on the screen. In this case, it will display
* one of the great questions of the universe
**/

void returnNothing()

{
// display our profound question
cout << "What is the meaning of life, the universe, and everything?\n";
// send no information back to main()
return;
}

The second function will return a single integer value back to the caller.

/***

7]
EL * RETURN A VALUE
= * This function, when called, will return a single integer value.
Q. **/
8 int returnAvalue()
{
// did you guess what value we will be returning here?
return 42;
}
The two functions can be called from main:
int main()
{
// call the function asking the profound question
returnNothing(); // no data is sent to main()
// display the answer:
cout << "The answer is: "
<< returnAvValue() // the return value of 42 is sent to COUT
<< endl;
return 0;
}
"<l The complete solution is available at 1-4-simpleFunctionCalling.cpp or:
(¢)
E: /home/cs124/examples/1-4-simpleFunctionCalling.cpp
[72]
o

Page 60 | 1.4 Functions | Unit1: Simple Program | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/1-4-simpleFunctionCalling.html

Example 1.4 - Prompt Function

oM This example will demonstrate how create a simple prompt function. This function will display a
S message to the user asking him for information, receive the information using cin, and return the value
Bl through the function return mechanism.
Sl Write a program to prompt the user for his age. The user’s age will then be displayed. User input is
=B bold and underlined.
o
o What is your age? 19
E Your age is 19 years old.
The prompt function follows the “return a value” pattern from the previous example:
/**
* GET AGE
* Prompt the user for his age. First display a message stating
* what information we hope the user will provide. Next receive
* the user input. Finally, return the results to the caller.
**/
int getAge()
int age; // we need a variable to store the user input
cout << "What is your age? "; // state what you want the user to give you
cin >> age; // we need a variable to store the user input
return age; // this sends data back to main()
» }
e . .
=l Next we will create main() to test our function.
it o
g /***
* MAIN
* The whole purpose of main() is to test our getAge() function.
**/
int main()
{
// get the user input
int age = getAge(); // store the data from getAge() in a variable
// display the results
cout << "Your age is " // note the space after “is”
<< age // the value from getAge() is stored here
<< " years old.\n"; // again a space before “year”
return 0; // return “success”
}
c_.__?. As a challenge, try to add a new function to prompt for GPA. Note that this one will return a floating
=Wl point number instead of an integer. What changes will you have to add to main() to test this function?
)
=
a9
(¢}
“<l The complete solution is available at 1-4-promptFunction.cpp or: Ty
o
E: /home/cs124/examples/1-4-promptFunction.cpp
@
o

Procedural Programming in C++ | Unit 1: Simple Programs | 1.4 Functions | Page 61

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/1-4-promptFunction.html
https://video.byui.edu/media/1.4+-+Prompt+Function/0_gnl0xsr0/18442462

Parameter Passing

Parameter passing is the process of sending data between functions. The programmer can send only one piece
of data from the callee (the function responding to the function call) and the caller (the function issuing or
initiating the function call). This data is sent through the return mechanism. However, the programmer can
specify an unlimited amount of data to flow from the caller to the callee through the parameter passing
mechanism.

Multiple Parameters

To specify more than one parameter to a function in C+ +, the programmer lists each parameter as a comma-
separated list. For example, consider the scenario where the programmer is sending a row and column
coordinate to a display function. The display function will need to accept two parameters.

/**

* DISPLAY COORDINATES

* Display the row and column coordinates on the screen
**/

void displayCoordinates(int row, int column) // two parameters are expected

{
cout << "("
<< row // the row parameter is the first passed
o
<< column // the column parameter is the second
<< ")\n";
return;
}

For this function to be called, two values need to be provided.
displayCoordinates(5, 10);

Parameter matchup occurs by order, not by name. In other words, the first parameter sent to
displayCoordinates() will always be sent to the row variable. The second parameter will always be sent to the
column.

Note that the two parameters do not need to be of the same data-type.

[KR K K KSR SRR SRR S KRR SRR S KRR KR K ok

* computePay

* Compute pay based on wage and number of hours worked
stk ok skok sk ok sk ok skok stk ok skl sk sk stk kol sk sk skl skl sk sk skl skt sk sk koot ok ok /

double computePay(float wage, int hoursWorked)
{

}

return (double)(wage * hoursWorked);

Common mistakes when working with parameters include:

e Dassing the wrong number of parameters. For example, the function may expect two parameters but
the programmer only supplied one:

displayCoordinates(4); // two parameters expected. Where is the second?

e Getting the parameters crossed. For example, the function expects the first parameter to be row but
the programmer supplied column instead:

displayCoordinates(column, row); // first parameter should be row, not column

Page 62 | 1.4 Functions | Unit1: Simple Program | Procedural Programming in C++

Working with Parameters

There are four main ways to think of parameter passing in a C++ program:

Input-only '\ (Output-only Processing Update
void display(int get(); bool isLeap(void update(
int value); int year); int &money);

A4 \
hd [

) J P
\ \ v

Input Only: The first way involves data traveling one-way into a function. Observe how there is an input
parameter (int value) but no return type (void). This is appropriate in those scenarios when you want a
tunction to do something with the data (such as display it) but do not want to send any data back to the
caller:

void display(int value);

Output Only: The second way occurs when data flows from a function, but not into it. An example would
be a function prompting the user for information (such as getIncome() from Project 1). In this case, the
parameter list is empty but there is a return value.

int get();

Processing: The third way occurs when a function converts data from one type to another. This model was
followed in both our computesavings() and convertFeetToMeters() examples. It is important to realize that
you can have more than one input parameter (in the parentheses) but only one output parameter (the return
mechanism).

bool isLeap(int year);
float add(float valuel, float value2);

Update: The final way is when data is converted or updated in the function. This special case occurs when
the input parameter and the return value are the same variable. In this case, we need a special indicator on the
variable in the parameter list to specify that the variable is shared between the caller and the callee. We call
this call-by-reference.

void update(int &money);

Procedural Programming in C++ | Unit 1: Simple Programs | 1.4 Functions | Page 63

Example 1.4 - Compute Function

(? This example will demonstrate how to send data to a function and receive data from a function. This
g tollows the “Processing” model of information flow through a function.

Wl Write a program to compute how much money to put in a savings account. The policy is “half the
S income after tithing is removed.”

g

o What is your allowance? 10.00

= You need to deposit $4.50

The function to compute savings takes income as input and returns the savings amount

/***

* For a given amount of earned income, compute the amount to be saved
**/

int computeSavings(int centsIncome)

{
// first take care of tithing
int centsTithing = centsIncome / 10; // D&C 119:4
centsIncome -= centsTithing; // remove tithing from the income
// next compute the savings
int centsSavings = centsIncome / 2; // savings are half the remaining
return centsSavings;

}

This function will be called from main. It will provide the input centsIncome and present the results to

7]
=Ml the user through a cout statement.
(o
g‘ /***
=) * Prompt the user for his allowance and display the savings component
***/
int main()
{
// prompt the user for his allowance
float dollarsAllowance; // a float for decimal #s
cout << "What is your allowance? ";
cin >> dollarsAllowance; // input is in dollars
int centsAllowance = (int)dollarsAllowance * 100; // convert to cents
// display how much is to be deposited
int centsDeposit = computeSavings(centsAllowance); // call the function!
cout << "You need to deposit $"
<< (float)centsDeposit / 100.0 // convert back to dollars
<< endl;
return 0;
}
@B A a challenge, create a function to convert a floating-point dollars amount (dollarsAllowance) into an
= &¢ gp
=@l integral cents amount (centsAllowance). Use the formula currently in main():
T,
&3 int centsAllowance = (int)dollarsAllowance * 100;
o
7 The complete solution is available at 1-4-computeFunction.cpp or: T
o
o /home/cs124/examples/1-4-computeFunction.cpp
=
o

Page 64 | 1.4 Functions | Unit1: Simple Program | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/1-4-computeFunction.html
https://video.byui.edu/media/1.4+-+Compute+Function/0_evpstzm7/18442462

In the preceding example, there are a few things to observe about the function computeSavings(). First,
integers were chosen instead of floating point numbers. This is because, though floats can work with
decimals, they are approximations and often yield unwieldy answers containing fractions of pennies! It is
much cleaner to work with integers when dealing with money. To make sure this is obvious, include the units
in the variable name.

Data is passed from main() into the function computeSavings() through the ()s after the function name. In
this case, the expression containing the variable centsAllowance is evaluated (to the value 2150 if the user
typed 21.50). This value (not the variable!) is sent to the function computeSavings() where a new variable
called centsIncome is created. This variable will be initialized with the value from the calling function (2150 in
this case). It is important to realize that a copy of the data from main() is sent to the function through the
parameter list; the variable itself is not sent! In other words, the variable centsIncome in computeSavings() can
be changed without the variable centsAllowance in main() being changed. This is because they are different
variables referring to different locations in memory!

When execution is in the function computeSavings(), only variables declared in that function can be used. This
means that the statements in the function only have access to the variables centsIncome, centsTithing, and
centsSavings. The variables from the caller (dollarsAllowance, centsAllowance, and centsDeposit) are not
visible to computesavings(). To pass data between the functions, parameters must be used

Pass-By-Reference

Pass-by-reference, otherwise known as “call-by-reference” is the process of indicating to the compiler that a
given parameter variable is shared between the caller and the callee. We use the ampersand & to indicate the
parameter is pass-by-reference.

Pass By Value Pass By Reference

Pass-by-value makes a copy so two independent Pass-by-reference uses the same variable in the
variables are created. caller and the callee.

Any change to the variable by the function will not =~ Any change to the variable by the function will

affect the caller. affect the caller.
Rk sk ks kst sk stk ks ok ks ok skl skl ko ok sk sk ok sk ok skok ok Rk sk ks ok ko ok stk ks ok sk ok ok sk skl ko ok skl ks kot ok ok skok ok ok
* Pass-by-value * Pass-by-reference
* No change to the caller * Will change the caller
okt skok ok skokok sk skok koot skokskok ok skok sk skokskok ko sk skokokok ok / ook stk sk ko stk koot sk skok sk skl ks skok kot skokskokokok
void notChange(int number) void change(int &number)
number++; number++;

We use pass-by-reference to enable a callee to send more than one piece of data back to the caller. Recall that
the return mechanism only allows a single piece of data to be sent back to the caller. An example of this would
be:

void getCoordinates(int &row, int &column) // data is sent back by row and column

{

cout << "Specify the coordinates (r c): “;
cin >> row >> column;
return; // no data is sent using return

Procedural Programming in C++ | Unit 1: Simple Programs | 1.4 Functions | Page 65

Example 1.4 - Passing By Reference

This example will demonstrate how to pass no data to a function, how to use pass-by-value, and how
to use pass-by-reference.

ownd(

The first function does not pass any data into or out of the function:

/***

* PASS NOTHING: No information is being sent to the function
***/

void passNothing()

// a different variable than the one in MAIN
int value;
value = 9;

}

The second passes data into the function, so the function gets a copy of what the caller sent it. This is
called pass-by-value:

/***

* PASS BY VALUE: One-way flow of information from MAIN to the function.
* No data is being sent back to MAIN
***/

void passByValue(int value)

{
// show the user what value was sent to the function
g? cout << "passByValue(" << value << ")\n";
J—
E. // this is a copy of the variable in MAIN. This will not
o // influence MAIN in any way:
= value = 1;
}
The final uses pass-by-reference. This means that both the caller and the callee share a variable. This
relationship is indicated by the @’ symbol beside the parameter in the function:
Rk stk ke stk skl sk ke sk sk skl stk ok skl skl ko sk skl skl ko sk sk ok skl ko ok skl ks sk ok skl ks sk ok ok sk s skokok ok ok ok
* PASS BY REFERENCE: Two-way flow of data between the functions. Changes to
* REFERENCE will also influence the variable in MAIN
stk kskok ok skokok sk skok ok skokskok sk skokok skt kol sk sk skl kol kst skok sk skokok sk ks skl ksl stk sk sk skok ok skt sk kok ok ok ok f
void passByReference(int &reference)
{
// show the user what value was sent to the function
cout << "passByReference(" << reference << ")\n";
// this will actually change MAIN because there was the &
// in the parameter
reference = 2;
}
The only difference between passByReference(int &reference) and passByvalue(int value) is the
existence of the & beside the variable name. When the & is specified, then pass-by-reference is used.
“<l The complete solution is available at 1-4-passByReference.cpp or:
o
E: /home/cs124/examples/1-4-passByReference.cpp
72
o

Page 66 | 1.4 Functions | Unit1: Simple Program | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/1-4-passByReference.html

Prototypes

C++ programs are compiled linearly from the top of the file to the bottom. At the point in time when a
given line of code is compiled, the compiler must know about all the variables and functions referenced in
order for it to be compiled correctly. This means that the variables and functions must be defined above the
line of code in which they are referenced.

One fallout of this model is that main() must be at the bottom of the file. This is required because any function
referenced by main() must be defined by the time it is referenced in main(). As you may imagine, this can be
inconvenient at times. Fortunately, C++ gives us a way to work around this constraint.

Prototypes are a way to give the compiler “heads-up” that a function will be defined later in the program.
There are three required parts to a prototype: the return type, the function name, and the data-type of the
parameters.

This is always a data || Must be the same | Only the data-type are required, but
type. as the definition. most put the variable names here also.

|float|[add|(float valuel, float value2);

One nice thing about prototypes is that it allows us to put main() at the top of the program file, preceded by
a list of all the functions that will appear later in the file.

#include <iostream>

Using namespace std; Prototype of the function

displayInstructions().

[void displayInstructions();l Note the absence of code;
this is just an outline.

/**********************************/

int main() Here the function is called
{ inside main() even though
[displayInstructions(); displayInstructions()
has not been defined yet.

// pause Normally we need to define

char letter;
cin >> letter;
return @; Now the function
} displayInstructions()
is defined, we better have
exactly the same name,
return type, and parameter
" list as the prototype or the

a function before we call it.

/**********************************/

|[void displayInstructions()

cout << "Please press the <enter>

<< " key to quit the program” compiler will get grumpy.
<< endl;
return;

Scope

A final topic essential to understanding how data passes between functions is Scope. Scope is the context in
which a given variable is available for use. For example, if a variable is defined in one function, it cannot be
referenced in another. The general rule of variable scope is the following:

A variable is only visible from the point where it is declaved to the next closing curly brace }

Procedural Programming in C++ | Unit 1: Simple Programs | 1.4 Functons | Page 67

Local Variables

The most common way to declare variables is in a function. This is called a “local variable” because the variable
is local to (or restricted to) one function. Consider the following example:

/**

* PRINT NAME

* Display the user’s name. No data is shared with MAIN
**/

void printName()

char name[256]; // Local variable only visible in the function printName
cin >> name;
cout << name << endl; // last line of code where name is in scope
/**
* MAIN

* Because there are no parameters being passed, there is

* no communication between main() and printName()
**/

int main()

{
printName(); // no variables are in scope here
return 0;

}

Here name is a local variable. Its buffer is created when printName() is called. We know for a fact that it is not
used or relevant outside printName().

IF Local

Though we have not learned about IF statements yet, consider the following code:

{
int first = 20;
int second 10;

if (first > second)

{

int temp = first; // the variable temp is in scope from here...
first = second;
second = temp; // ... to here. The next line has a } ending the scope

}

cout << first << ", // only first and second are "in scope" at this point
<< second << endl;

}

Here the variable temp is only relevant inside the IF statement. We know this because the variable falls out of
scope once the } is reached after the statement “second = temp;”. Because the scope of temp is IF local, it is only
visible inside the IF statement. Therefore, there is no possibility for side eftects.

Page 68 | 1.4 Functions | Unit1: Simple Program | Procedural Programming in C++

Blocks

A variable is only visible until program execution encounters the closing } in which it is defined. Note that
you can introduce {}s at any point in the program. They are called blocks. Consider the following example:

{
display();
// pause
{ // the purpose of the {}s here are to limit scope
cout << "Press any key to continue";
char something; // only "in scope" for two lines of code
cin.get(something);
}
}

Since we are going to throw away something anyway and the value is irrelevant, we want to make sure that it
is never used in a way different than is intended. The block ensures this.

Globals

A global variable is defined as a variable defined outside any function, usually at the top of a file.

#include <iostream>
using namespace std;

int input; // global variables are evil! Be careful

/*************************************

* MAIN

* Global variables are evill!
*************************************/

int main()

{

cout << "Enter your age: ";
cin >> input;

if (input > 25)
cout << "Man you are old!\n";

return 0;

}

These are very problematic because they are accessible by any function in the entire program. It therefore
becomes exceedingly difficult to answer questions like:

e Is the variable initialized?

e Who set the variable last?

e Who will set the variable next?

e Who will be looking at this variable and depending on its value?

Unfortunately, these questions are not only exceedingly difficult to answer with global variables, but they are
exceedingly important when trying to fix bugs. For this reason, global variables are banned for all classes in
the BYU-Idaho Computer Science curriculum.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.4 Functions | Page 69

Problem 1

Write the C+ + statements for the following:

c=2nr
8+3=x
e = mc?
_1
x—zy

Please see page 47 for a hint.

Problem 2

What is the value of ¢ when the expression is evaluated:

int £ = 34;
float ¢ = (f - 32) * 5 / 9;

Answer:

Please see page 49 for a hint.

Problem 3

Write a function to display “Hello World”. Call it hello()
Answer:

Please see page 60 for a hint.

Problem 4

Write a function to return a number. Call it get()

Answer:

Please see page 64 for a hint.

Page 70 | 1.4 Functions | Unit1: Simple Program | Procedural Programming in C++

Problem 5

What is the output?

int two()
{

}

int main()

{

return 3;

2;
two() + one;

int one
int three

cout << three << endl;

return 0;

Answer:

Please see page 59 for a hint.

Problem 6

What is the output?
void a()
{
cout << "a";
return;
¥
void b()
{
cout << "bb";
return;
}
int main()
{
a();
b();
a();
return 0;
}
Answer:

Please see page 59 for a hint.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.4 Functions | Page 71

Problem 7

What is the output?
double a(double b, double c)
{
return b - c;
}
int main()
float x = a(4.0, 3.0);
float y = a(7.0, 5.0);
cout << a(x, y) << endl;
return 0;
}
Answer:

Please see page 62 for a hint.

Problem 8

What is the output?
double add(double nl, double n2)
{
return nl + n2;
}
int main()
{
double n3 = add(0.1, 0.2);
double n4 = add(n3, add(@.3, 0.4));
cout << n4 << endl;
return 0;
}
Answer:

Please see page 62 for a hint.

Page 72 | 1.4 Functions | Unit 1: Simple Program

Procedural Programming in C++

Problem 9

What is the output?
void weird(int a, int &b)
{
a=1;
b = 2;
}
int main()
{
int a = 3;
int b = 4;
weird(a, b);
cout << a * b << endl;
return 0;
}

Answer:

Please see page 65 for a hint.

Problem 10

What is the output?

void setTrue(bool a)

{
a = true;
return;

}

int main()

{
bool a = false;
setTrue(a);

cout << (int)a << endl;

return 0;

Answer:

Please see page 65 for a hint.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.4 Functions | Page 73

Problem 11

What is the output?
int main()
{
cout << a(b()) << endl;
return 0;
}
int a(int value)
{
return value * 2;
}
int b()
{
return 3;
}
Answer:

Please see page 67 for a hint.

Problem 12

What is the output?

char value = 'a‘;
int main()
{

char value = 'b’';

if (true)
{

}

char value = 'c';

cout << value << endl;

return 0;

Answer:

Please see page 67 for a hint.

Page 74 | 1.4 Functions | Unit1: Simple Program | Procedural Programming in C++

You should start this assignment by copying the file /home/cs124/assignments/assigni4.cpp to your
directory:

cp /home/csl24/assignments/assignl4.cpp assignmentl4d.cpp

There are two functions that you will need to write:

Display Message
Please create a function called questionpeter(). The function should not return anything but instead display
the following message:

Lord, how oft shall my brother sin against me, and I forgive him?
Till seven times?

Display Answer

The second function called responseLord() will return the Lord’s response: 7 * 70. This function will not
display any output but rather return a value to the caller.

Main
main() is provided in the file /home/cs124/assignments/assigni4. cpp:

/**

* Main will not do much here. First it will display Peter's question,

* then it will display the Lord's answer
***/

int main()

{
// ask Peter's question
questionPeter();
// the first part of the Lord's response
cout << "Jesus saith unto him, I say not unto thee, Until seven\n";
cout << "times: but, Until " << responseLord() << ".\n";

return 0;

Example

Lord, how oft shall my brother sin against me, and I forgive him?
Till seven times?

Jesus saith unto him, I say not unto thee, Until seven

times: but, Until 49e.

Instructions

Please verify your solution against:

testBed cs124/assignl4d assignmentl4.cpp

Don’t forget to submit your assignment with the name “Assignment 14” in the header.

Please see page 60 for a hint.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.4 Functions | Page 75

Unit 1. Simple Programs
A ——
1.5 Boolean Expressions

Sam is reading his scriptures one day and comes across the following verse from 2 Corinthians:

Every man accovding as he purposeth in his heart, so let him give; not grudgingly, or
of necessity: for God loveth a Cheerfil giver. (2 Corvinthians 9:7)

Now he wonders: is his offering acceptable to the Lord? To address this issue, he reduces the scripture to a
Boolean expression.

Objectives
By the end of this class, you will be able to:

e Declare a Boolean variable.
e Convert a logic problem into a Boolean expression.

e Recite the order of operations.

Prerequisites
Before reading this section, please make sure you are able to:

e Represent simple equations in C++ (Chapter 1.3).
e Choose the best data-type to represent your data (Chapter 1.2).

Overview

Boolean algebra is a way to express logical statements mathematically. This is important because virtually all
programs need to have decision making logic. There are three parts to Boolean algebra: Boolean variables
(variables enabling the programmer to store the results of Boolean expressions), Boolean operators
(operations that can be performed on Boolean variables), and Comparison operators (allowing the
programmer to convert a number to a Boolean value by comparing it to some value). The most common

operators are:
~ Not !

Itrue
A And && true && false
\ Or | | true || false
= Equals == X + 5 ==42/2
Not Equals 1= graduated != true
< Less than < age < 16
< Less than or equal to <= timeNow <= timeLimit
> Greater than > age > 65
= Greater than or equal to >= grade >= 90

Page 76 | 1.5 Boolean Expressions | Unit 1: Simple Program | Procedural Programming in C++

And, Or, and Not

The three main logical operators we use in computer programming are And, Or, and Not. These, it turns
out, are also commonly used in our spoken language as well. For example, consider the following scripture:

Every man accovding as he purposeth in his heavt, so let him give; not grudgingly, ov of
necessity: for God loveth a Cheerful giver. (2 Covinthians 9:7)

This can be reduced to the following expression:
acceptable = inHisHeart and not (grudgingly or necessity)

In C+ +, this will be rendered as:

bool isAcceptable = isFromHisHeart && !(isGrudgingly || isOfNecessity);

This Boolean expression has all three components: And, Or, and Not.

AND

The Boolean operator AND evaluates to true only if the left-side and the right-side are both true. If either
are false, the expression evaluates to false. Consider the following statement containing a Boolean AND
expression:

bool answer = leftSide && rightSide;

This can be represented with a truth-table:

Left-
AND side

true false

Right-
side

If 1eftside = false and rightSide = false, then leftSide && rightSide evaluates to false. This case is
represented in the lower-right corner of the truth table (observe how the column corresponding to that cell
has false in the header corresponding to the leftSide variable. Observe how the row corresponding to that
cell has false in the header corresponding to the rightSide variable).

The AND operator is picky: it evaluates to true only when both sides are true.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.5 Boolean Expressions | Page 77

OR

The Boolean operator OR evaluates to true if either the left-side or the right-side are true. If both are false,
the expression evaluates to false. Consider the following statement containing a Boolean OR expression:

bool answer = leftSide || rightSide;
The corresponding truth-table is:

Left-
OR side

true false

Right-

side

If leftside = false and rightSide = true, then leftSide || rightSide evaluates to true. This case is
represented in the middle-right cell of the truth table (observe how the column corresponding to that cell has
false in the header corresponding to the leftside variable. Also note how the row corresponding to that cell
has true in the header corresponding to the rightside variable).

The OR operator is generous: it evaluates to true when either condition is met.

NOT

The Boolean operator NOT is a unary operator: only one operand is needed. In other words, it only operates
on the value to the right of the operator. NOT evaluates to true when the right-side is false and evaluates to
false with the right-side is true. Consider the following statement containing a Boolean NOT expression:

bool wrong = ! right;

The corresponding truth-table is:

NOT
Right- true ‘ false
side false RS

If right = false then !right is true. If right = true then !right is false. In other words, the NOT operator
can be thought of as the “opposite operator.”

Page 78 | 1.5 Boolean Expressions | Unit 1: Simple Program | Procedural Programming in C++

Example
Back to our scripture from the beginning:

Every man accovding as he purposeth in his heavt, so let him give; not grudgingly, ov of
necessity: fov God loveth a Cheerfil giver. (2 Covinthians 9:7)

This, as we discussed, is the same as:
bool isAcceptable = isFromHisHeart && !(isGrudgingly || isOfNecessity);

In this case, Sam is giving from his heart (isFromHisHeart = true) and is not giving of necessity (isofNecessity
= false). Unfortunately, he is a bit resentful (isGrudgingly = true). Evaluation is:

1. bool isAcceptable = isFromHisHeart && !(isGrudgingly || isOfNecessity);

2. bool isAcceptable = true & !(true || false); // replace variables with values
3. bool isAcceptable = true & !(true); // true || false --> true

4. bool isAcceptable = true && false; // ltrue --> false

5. bool isAcceptable = false; // true && false --> false

Thus we can see that Sam’s offering is not acceptable to the Lord. The grudging feelings have wiped out all
the virtue from his sacrifice.

The more transformations you know, the easier it will be to work with Boolean expressions
in the future. Consider the distributive property of multiplication over addition:

a*(b+c)==1(a*b)+ (a*c)

Knowing this algebraic transformation makes it much easier to solve equations. There is a similar
Boolean transformation called DeMorgan. Consider the following equivalence relationships:

H'(p || a) == !p && !q
'(p && q) == !p || !q
It also works for AND/OR:

a |l (b&&c)==1(al|lb)s&(a]]c)
a8& (b || c) == (a & b) || (a && c)

1
““L uc's 11ps

Boolean operators also work with numbers as well. Recall that @ > false and all values other
than e map to true. When evaluating Boolean expressions containing non-Boolean values, you
convert the value to a bool immediately before the Boolean operator is evaluated:

(7 && ©) > (true && false) > false

165 2> !true > false

Procedural Programming in C++ | Unit 1: Simple Programs | 1.5 Boolean Expressions | Page 79

Comparison Operators

Boolean algebra only works with Boolean values, values that evaluate to either true or false. Often times we
need to make logical decisions based on values that are numeric. Comparison operators allow us to make
these conversions.

Equivalence

The first class of comparison operators consists of statements of equivalence. There are two such operators:
equivalence == and inequality !=. These operators will determine whether the values are the same or not.
Consider the following code:

int grade = 100;
bool isPerfectScore = (grade == 100);

In this example, the Boolean variable isperfectscore will evaluate to true only when grade is 100%. If grade
is any other value (including 101%), isPerfectScore will evaluate to false. It is also possible to tell if two
values are not the same:

int numStudents = 21;
bool isClassHeldToday = (numStudents != 0);

Here we can see that we should go to class today. As long as the number of students attending class
(numStudents) does not equal zero, class is held.

Relative Operators

The final class of comparison operators performs relative (not absolute) evaluations. These are greater than >,
less than <, greater than or equal to >=, and less than or equal to <=. Consider the following example using
integers:

int numBoys = 6;

int numGirls = 8;
bool isMoreGirls = (numGirls > numBoys);

This works in much the same way when we compare floating point numbers. Note that since floating point
numbers (float, double, long double) are approximations, there is little difference between > and >=.

float grade = 82.5;
bool hasPassedCS124 = (grade >= 60.9); // passed greater than or equal to 60%

Finally, we can even use relative operators with chars. In these cases, it is important to remember that each
letter in the ASCII table corresponds to a number. While we need not memorize the ASCII table, it is useful
to remember that the letters are alphabetical and that uppercase letters are before lowercase letters:

char letterGrade 'B'

= H
bool goodGrade = ('C' >= letterGrade);

Page 80 | 1.5 Boolean Expressions | Unit 1: Simple Program | Procedural Programming in C++

oun(

w[qoIJ

oS

uonn

8udreyD

OS]y 999

Example 1.5 - Decision Function

This example will demonstrate how to write a function to help make a decision. This will be a binary

decision (choosing between two options) so the return type will be a bool.

Write a program to compute whether a user qualifies for the child tax credit. The rule states you qualify
if you make less than $110,000 a year (the actual rule is quite a bit more complex, of course!). Note
that you either qualify or you don’t: there are only two possible outcomes. If you do quality, then the
credit is $1,000 per child. If you don’t, no tax credit is awarded.

What is your income: 115000.00

How many children? 2
Child Tax Credit: $ 0.00

The key part of this problem is the function deciding whether the user qualifies for the child tax credit.
The input is income as a float and the output is the decision as a bool.

/**************************************

* QUALIFY

* Does the user qualify for the tax credit?
* This will return a BOOL because you either
* qualify, or you don't!
***************************************/

bool qualify(double income)

{

}

return (income <= 110000.00);

Observe how the name of the function implies what true means. In other words, if qualify() returns
true, then the user qualifies. If qualify() returns false, then the user doesn’t. Always make sure the
name of the function implies what true means when working with a bool function.

The next part is computing the credit to be awarded. This will require an IF statement which will be
discussed next chapter.

if (qualify(income))

cout << 1000.00 * (float)numChildren << endl;
else

cout << 0.00 << endl;

Notice how the return value of the qualify() function goes directly into the IF statement.

It turns out that the child tax credit is actually more complex than this. The taxpayer gets the full $1,000
for every child if the income is less than $110,000 but it phases out at the rate of 5¢ for each $1 after
that. In other words, a family making $120,000 will only receive $500 per child. Thus there is no credit
possible for families making more than $130,000.

As a challenge, modify the above example to more accurately reflect the law.

The complete solution is available at 1-5-decisionFunction.cpp or: Nyy

/home/cs124/examples/1-5-decisionFunction.cpp

Procedural Programming in C++ | Unit 1: Simple Programs | 1.5 Boolean Expressions | Page 81

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/1-5-decisionFunction.html
https://video.byui.edu/media/1.5+-+Decision+Function/0_hz8iu6g0/18442462

Order of Operations

With all these Boolean operators, the order of operations table has become quite complex (a more complete
version of this table is in Appendix B):

) Parentheses
++ -- Increment, decrement Math
. Unary
! Not Logic
E———
/% Multiply, divide, modulo —
..) Math
+ - Addition, subtraction
:K
> >= < <= Greater than, less than, etc. Relative 4
- Binary
== |= Equahty Absolute Logic
&& And AND
= 4= *= Assignment

There are a couple things to remember when trying to memorize the order of operations:

1. Unary Before Binary: When an operator only takes one operand (such as x++ or !'true), it goes at
the top of the table. When an operator takes two (such as 3 + 6 or grade > 60), it goes at the bottom
of the table.

2. Math Before Logic: Arithmetic operators (such as addition or multiplication) go before Boolean
operators (such as AND or Greater-than). This means that operations evaluating to a bool go after
operations evaluating to numbers.

3. Relative Before Absolute: Conditional operators making a relative comparison (such as greater-
than >) go before those making absolute comparisons (such as not-equal !=).

4. AND Before OR: This is one of those things to just memorize. Possibly you can remember that
they are in alphabetical order?

While it is useful (and indeed necessary!) to memorize the order of operations, please don’t
expect the readers of your code to do the same. It is far better to disambiguate your expressions
by using many parentheses. This gives the bugs nowhere to hide!

Page 82 | 1.5 Boolean Expressions | Unit 1: Simple Program | Procedural Programming in C++

Problem 1, 2

Write a function to multiply two numbers. Call the function multiply().

Write main() to prompt the user for two numbers, call multiply(), and display the product.

Please see page 64 for a hint.

Problem 3

Write a function to represent the prerequisites for CS 165: you must pass CS 124 and Math 110.

Please see page 81 for a hint.

Problem 4

Write a function to represent how to pass this class: you can either earn a grade greater than or equal to
60% or you must bribe the professor. Realize, of course, that this is not how to pass the class...

Please see page 81 for a hint.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.5 Boolean Expressions | Page 83

Problem 5-11

What is the value for each of the following variables?

{
bool a = ('a' < 'a');
bool b = ('b' > 'a');
bool ¢ = (a * 4) && b;
bool d = I(b || (c || true));
bool e = a & b && c && d;
bool f =a || b || c || d;
bool g = (a != b) && true;

}

Please see page 82 for a hint.

Problem 12-16

For each of the following, indicate where the parentheses goes to disambiguate the order of operations:

Raw expression With parentheses

2 >3 * 3

< b

b & c || d

C++ > 2 + 7 ==9 % 2
b >c>d

|+ | |+

QN D

A\

Please see page 49 for a hint.

Page 84 | 1.5 Boolean Expressions | Unit 1: Simple Program | Procedural Programming in C++

Write a function to determine if an individual is a full tithe payer. This program will have one function that
accepts as parameters the income and payment, and will return whether or not the user is a full tithe payer.
The return type will need to be a Boolean value. Note that main() is already written for you. Also note that
the skeleton of isFullTithePayer() is written, but there is more code to be written in the function for it to
work as desired.

For this assignment, main() will be provided at:

/home/cs124/assignments/assignl5.cpp

Please copy this file and use it as you did the templates up to this point.

Example

Two examples. The user input is in underline.

Example 1: Full Tithe Payer

Income: 100
Tithe: 91
You are a full tithe payer.

Example 2: Not a Full Tithe Payer
Income: 532
Tithe: 40
Will a man rob God? Yet ye have robbed me.

But ye say, Wherein have we robbed thee?
In tithes and offerings. Malachi 3:8

Instructions

The test bed is available at:

testBed cs124/assignl5 assignmentl5.cpp

Don’t forget to submit your assignment with the name “Assignment 15 in the header.

Please see page 81 for a hint.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.5 Boolean Expressions | Page 85

Unit 1. Simple Programs

1.6 IF Statements

Sue has just received her third text message in the last minute. Not only are her best friends text-aholics, but
it seems that new people are texting her every day. Sometimes she feels like she is swimming in a sea of text
messages. “If only I could filter them like I do my e-mail messages” thinks Sue as four new messages appear
on her phone in quick succession. Deciding to put a stop to this madness, she writes a program to filter her
text messages. This program features a series of IF statements, each containing a rule to route the messages
to the appropriate channel.

Objectives
By the end of this class, you will be able to:

e Create an IF statement to modify program flow.

e Recognize the pitfalls associated with IF statements.

Prerequisites
Before reading this section, please make sure you are able to:
® Declare a Boolean variable (Chapter 1.5).

e Convert a logic problem into a Boolean expression (Chapter 1.5).
e Recite the order of operations (Chapter 1.5)

Overview

IF statements allow the program to choose between two courses of action depending on the result of a
Boolean expression. In some cases, the options are “action” and “no action.” In other cases, the options may
be “action A” or “action B.” In each of these cases, the IF statement is the tool of choice.

Action/No-Action

The first flavor of the IF statement is represented with the following syntax:

if (<Boolean expression>)
<body statement>;

For example:

{
if (assignmentLate == true)
assignmentGrade = 0;

}

The Boolean expression, also called the controlling expression, determines whether the statements inside the
body of the loop are to be executed. If the Boolean expression (assignmentLate == true in this case) evaluates
to true, then control enters the body of the IF statement (assignmentGrade = 0;). Otherwise, the body of the
IF statement is skipped.

Page 86 | 1.6IF Statements | Unit 1: Simple Program | Procedural Programming in C++

Action-A/Action-B
The second flavor of the IF statement is represented with the following syntax:
if (<Boolean expression>)
<body statement>;

else
<body statement>;

For example:

{
if (grade >= 60)
cout << "Great job! You passed!\n";
else
cout << "I will see you again next semester...\n";
}

Much like the Action/No-Action IF statement, the Boolean expression determines whether the first set of
statements is executed (cout << "Great job! You passed!\n";) or the second (cout << "I will see you again
next semester\n";). The first statement is often called the “true condition” and the second the “else condition”.

Observe how the else component of the IF statement aligns with the if. Also, both the true-condition and
the else-condition are indented the same: three additional spaces. Finally, note that there is no semicolon after
the Boolean expression nor after the else. This is because the entire IF-ELSE statement is considered a single
C+ + statement.

IF statements in C+ + are compiled into 3uMPz (or one of many conditional jump) assembly
statements. When the CPU encounters these statements, execution could either proceed to the next
instruction or jump to the included address, depending on whether the Boolean expression is TRUE
or not. Since CPUs like to look ahead in an effort to optimize processor performance, a decision must
be made: is it more likely the Boolean expression evaluates to TRUE or FALSE? As a rule, all CPUs
optimize on the TRUE condition. For this reason, there is a slight performance advantage for the
TRUE condition to be the “most likely” of the two conditions.

Consider, for example, the above code. Since the vast majority of the students will achieve a grade of
p J g

greater than 60%, the “Great job!” statement should be in the true-condition and the “next semester”

statement should be in the else-condition. This will be slightly more efficient than the following code:

if (grade < 60)

cout << "I will see you again next semester...\n";
else

cout << "Great job! You passed!\n";

Procedural Programming in C++ | Unit 1: Simple Programs | 1.6 IF Statements | Page 87

Example 1.6 - IF Statements

@l This example will demonstrate both types of IF statements: the Action/No-Action type and the Action-
% A/Action-B type.

E Write a program to prompt the user for his GPA and display whether the value is in the valid range.

©

O" Please enter your GPA: 4.01

g Your GPA is not in the valid range

The first part of the program is a function determining whether the GPA is within the acceptable range.
It will take a float GPA as input and return a bool, whether the value is valid.

/**

* Demonstrating an Action-A/Action-B IF statement
**/

bool validGpa(float gpa)

{
if (gpa > 4.0 || gpa < 0.9) // Boolean expression
return false; // True condition
else
return true; // False or Else condition
}

Note how two options are presented, the invalid range and the valid range.

The second part of the program displays an error message only in the case where GPA is outside the
accepted range. This is an example of the Action/No-Action flavor.

»
o
p—

/**

* Demonstrating an Action/No-Action IF statement
**/

int main()

{

uonn

float gpa;

// prompt for GPA
cout << "Please enter your GPA: ";
cin >> gpa;

// give error message if invalid
if (!validGpa(gpa)) // Boolean expression
cout << "Your GPA is not in a valid range\n"; // Action or Body of the IF

return 0;

As a challenge, see if you can modify the IF statement in main() to the Action-A/Action-B variety by
displaying a message if the user has entered a valid GPA.

Another challenge would be to remove the IF statement from the validGpa() function and replace it
with a simple boolean expression similar to what was done in Chapter 1.5

A8uareyn

The complete solution is available at 1-6-ifStatements.cpp or: Xuy

/home/cs124/examples/1-6-ifStatements.cpp

OS]y 999

Page 88 | 1.6IF Statements | Unit 1: Simple Program | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/1-6-ifStatements.html
https://video.byui.edu/media/1.6+-+IF+Statements/0_6x6bkgm6/18442462

Details

Anytime there is a place for a statement in C++, multiple statements can be added by using {}s. Similarly,
whenever there is a place for a statement in C++, any statement can go there. For example, the body of an
IF statement could contain another IF statement.

Compound Statements

Frequently we want to have more than one statement inside the body of the IF. Rather than duplicating the
IF statement, we use {}s to surround all the statements going inside the body:

if (!(classGrade >= 60))

{
classFail = true;
classRetake = true;
studentHappy = false;
}

}

Each time an additional indention is added, three more spaces are used. In this case, the IF statement is
indented 3 spaces. Observe how the {}s align with the IF statement. The three assignment statements (such
as classFail = true;) are indented an additional three spaces for a total of 6.

Nested Statements

Often we want to put an IF statement inside the body of another IF statement. This is called a nested statement
because one statement is inside of (or part of) another:

{
if (grade >= 90 && grade <= 100)
{
cout << "A";
if (grade <= 93)
cout << "-";
}
}

Observe how the second COUT statement is indented 9 spaces, three more than the inner IF and six more
than the outer IF. There really is no limit to the number of degrees of nesting you can use. However, when
indention gets too extreme (much more than 12), human readability of code often sufters.

Multi-Way

An IF statement can only differentiate between two options. However, often the program requires more than
two options. This can be addressed by nesting IF statements:

{
if (option == 1)
cout << "Good!";
else
{
if (option == 2)
cout << "Better";
else
cout << "Best!";
}
}

Procedural Programming in C++ | Unit 1: Simple Programs | 1.6 IF Statements | Page 89

Observe how the inner {}s are actually not necessary. We only need to add {}s when more than one statement
is used. Since a complete IF/ELSE statement (otherwise known as the Action-A/Action-B variant of an IF
statement) is a single statement, {}s are not needed. Thus we could say:

{
if (option == 1)
cout << "Good!";
else
if (option == 2)
cout << "Better";
else
cout << "Best!";
}

It we just change the spacing a little, we can re-arrange the code to a much more readable:

{
if (option == 1)
cout << "Good!";
else if (option == 2)
cout << "Better";
else
cout << "Best!";
}

This 1s the preferred style for a multi-way IF. Technically speaking, we can achieve a multi-way IF without
resorting to ELSE statements.

Be careful and deliberate in the order in which the IF statements are arranged in multi-way IFs.
Not only may a bug exist if they are in the incorrect order, but there may be performance
implications as well. Make sure to put the most-likely or common cases at the top and the less-
likely ones at the bottom.

Consider the following code:

{
if (numberGrade >= 90 && numberGrade <= 100)

letterGrade = 'A';

if (numberGrade >= 80 && numberGrade < 90)
letterGrade = 'B';

if (numberGrade >= 70 && numberGrade < 890)
letterGrade = 'C’';

if (numberGrade >= 60 && numberGrade < 70)
letterGrade = 'D';

if (numberGrade < 60)
letterGrade = 'F';

}

Observe how each of the five IF statements stands on its own. This means that, every time the code is executed,
cach IF statement’s Boolean expression will need to be evaluated. Also note how much of the Boolean

Page 90 | 1.6IF Statements | Unit 1: Simple Program | Procedural Programming in C++

expressions are redundant. This statement has exactly the same descriptive power as the following multi-way
IF:

{
if (numberGrade >= 90)
letterGrade = 'A';
else if (numberGrade >= 89)
letterGrade = 'B';
else if (numberGrade >= 70)
letterGrade = 'C';
else if (numberGrade >= 60)
letterGrade = 'D';
else
letterGrade = 'F';
}

Not only is this code much easier to read (simpler Boolean expressions) and less bug-prone (there is no
redundancy), it is also much more efficient. Consider the case where numberGrade == 93. In this case, the first
Boolean expression will evaluate to true and the body of the first IF statement will be executed. Since the
entire rest of the multi-way IF is part of the ELSE condition of the first IF statement, it will all be skipped.
Thus, far less code will be executed.

Pitfalls

The C+ + language was designed to be as efficient and high-performance as possible. In other words, it was
designed to facilitate making an efficient compiler so the resulting machine language executes quickly on the
CPU. The C++ language was not designed to be easy to learn or easy to write code. Modern derivatives of
C++ such as Java and C# were designed with that in mind. Taking this point into account, C++
programmers should always be on the look-out for various pitfalls that beset the language.

Pitfall: = instead of ==

Algebra treats the equals sign as a statement of equivalence, much like C++ treats the double equals sign. It
is therefore common to mistakenly use a single equals when a double is needed:

{
bool fail = false;
if (fail = true) // PITFALL: Assignment = used instead of ==
cout << "You failed!\n";
}

In this statement, it may look like the program will display a message if the user has failed the class. Since the
first statement sets fail to false, we will not execute the cout in the body of the IF. Closer inspection,
however, will reveal that we are not comparing fail with true. Instead we are setting fail to true. Thus, the
variable will change and the Boolean expression will evaluate to true.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.6 IF Statements | Page 91

Pitfall: Extra semicolon

Remember that the semicolon signifies the end of a statement. The end of an IF statement is the end of the
statement inside of the body of the IF. Thus, if there is a semicolon after the Boolean expression, we are
signifying that there is no body in the IF!

if (false); // PITFALL: Extra semicolon signifies empty body
cout << "False!\n";

}
Because of the semicolon after the (false), the above code is equivalent to:
if (false) // If you mean to have an empty body,
H // then put it on its own line like this.
cout << "False!\n";

}

In other words, the Boolean expression is ignored and the body of the IF is always executed!

LW

-
| 18

Train your eye to look for extra semicolons on IF statements. They should never be there! If
you meant to have an empty body (and you shouldn’t!), then put the semicolon on its own line
so the reader of the code knows it was intentional.

It the code editor tries to out-dent the body of your IF statement, pay attention: it is trying to
tell you something important! The editor knows about semicolons and IF statements and is
not fooled by this pitfall.

Pitfall: Missing {}s

In order to use a compound statement (more than one statement) in the body of an IF, it is necessary to
surround the statements with {}s. A common mistake is to forget the {}s and just indent the statements. C+ +
ignores indentations (they are just used for human readability; the compiler throws away all white-spaces
during the lexing process) and will not know the statements need to be in the body:

{
if (classGrade < 60)
classFail = true;
classRetake = true; // PITFALL: Missing {}s around the body of the IF
studentHappy = false;
}

This is exactly the same as:

{
if (classGrade < 60)
classFail = true;
classRetake = true;
studentHappy = false;
}

Observe how only the first statement (classFail = true;) is part of the IF.

Page 92 | 1.6IF Statements | Unit 1: Simple Program | Procedural Programming in C++

oun(

w[qoIJ

oS

uonn

8udreyD

OS[Y 999

Example 1.6 - Overtime

This example will demonstrate how to send data to a function and receive data from a function. This

tollows the “Processing” model of information flow through a function.

Write a program to compute the hourly wage taking into account time-and-a-half overtime. In other
words, if more than 40 hours are worked, then any additional hour benefits from a 50% increase in the
wage. This can be solved only after the program makes a decision: are we using the regular formula

(hourlyWage * hoursWorked) or the more complex overtime formula.

What is your hourly wage? 10
How many hours did you work? 41
Pay: $ 415.00

The function to compute pay taking the hourly wage and hours worked as input.

/***

* COMPUTE PAY

* Compute the user's pay using time-and-a-half
* overtime.
**/

float computePay(float hourlyWage, float hoursWorked)

{
float pay;
// regular rate
if (hoursWorked < 40)
pay = hoursWorked * hourlyWage;
// overtime rate
else
pay = (40.0 * hourlyWage) +
((hoursiWorked - 40.0) * (hourlyWage * 1.5)); //
return pay;
}

// regular rate

// first 40 are normal...
...the balance overtime

Some companies credit employees with an hour of work each month even if they only worked a few
minutes. In other words, there are four pay rates: no pay for those who did not work, a full hour’s wage
tor those working less than an hour a week, regular wage, and the overtime wage. As a challenge, modify

the above function to include this first-hour special case.

The complete solution is available at 1-6-overtime.cpp or:

/home/cs124/examples/1-6-overtime.cpp

Procedural Programming in C++ | Unit 1: Simple Programs

1.6 IF Statements

Page 93

Unit 1

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/1-6-overtime.html
https://video.byui.edu/media/1.6+-+Overtime/0_otes4gil/18442462

Problem 1

What is the output?
void function(int b, int a)
{
cout << "a == " << a << "\t'
<< "b == " << b << endl;
}
int main()
{
int a = 10;
int b = 20;
cout << "a == " << a << "\t'
<< "b == " << b << endl;
function(a, b);
return 0;
}
Answer:

Please see page 62 for a hint.

Problem 2-8

What are the values of the following variables:?:

{
bool a = false &% true || false && true;
bool b = false || true && false || true;
bool ¢ = true && true && true && false;
bool d = false || false || false || true;
bool e = 160 > 90 > 80;
bool f = 90 < 80 || 70;
bool g = 10 + 2 - false;
}
Please see page 79 for a hint.
Page 94 | 1.6IF Statements | Unit 1: Simple Program Procedural Programming in C++

Problem 9-13

For each of the following, indicate where the parentheses goes to disambiguate the order of operations:

Raw expression With parentheses

4 +1 > 2 * 2
a++ < b
a*b+c&d|]| e
3.1 * I b>7 * a++ =

a<b<<ccxd

++C + 2

Please see page 82 for a hint.

Problem 14

What is the output?

int subtract(int b, int a)

{
}

return a - b;

int main()

{
int ¢ = subtract(4, 3);
cout << c << endl;

return 0;

Answer:

Please see page 62 for a hint.

Problem 15

Write a function to accept a number from the caller as a parameter and return whether the number is
positive:

Please see page 87 for a hint.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.6 IF Statements | Page 95

Problem 16

What is the output?

{
bool failedClass = false;

int grade = 95;

// pass or fail?
if (grade < 60);
failedClass = true;

// output grade
cout << grade << "%\n";

// output status
if (failedClass)
cout << "You need to take
<< "the class again\n";

Answer:

Please see page 92 for a hint.

Problem 17

What is the output?

{
bool failedClass = false;

int grade = 95;

// pass or fail?
if (grade = 60)
failedClass = true;

// output grade
cout << grade << "%\n";

// output status

if (failedClass)

cout << "You need to take
<< "the class again\n";

Answer:

Please see page 91 for a hint.

Page 96 | 1.6IF Statements | Unit 1: Simple Program | Procedural Programming in C++

Problem 18

What is the output when the user inputs the letter ‘m’?

{

char gender;

// prompt for gender
cout << "What is your gender? (m/f)";
cin >> gender;

// turn it into a bool

bool isMale = true;

if (gender == 'f');
isMale = false;

// output the result
if (isMale)

cout << "You are male!\n";
else

cout << "You are female!\n";

Answer:

Please see page 92 for a hint.

Problem 19

What is the output when the user inputs the number 5?

{

int number;

// prompt for number

cout << "number? ";

cin >> number;

// crazy math

if (number = 0)
number += 2;

// output

cout << number << endl;

Answer:

Please see page 91 for a hint.

Procedural Programming in C++ | Unit 1: Simple Programs | 1.6 IF Statements | Page 97

Write a function (computeTax()) to determine which tax bracket a user is in. The tax tables are:

If taxable income is over--

$0 $15,100 10%
$15,100 $61,300 15%
$61,300 $123,700 25%
$123,700 $188,450 28%
$188,450 $336,550 33%
$336,550 no limit 35%

The yearly income is passed as a parameter to the function. The function returns the percentage bracket
that the wuser's income falls in. The return value from the function will be an integer

(10, 15, 25, 28, 33, or 35).

Next write main() so that it prompts the user for his or her income and accepts the result from the
computeTax() function and displays the result to the screen with a “%” after the number.

Examples

Three examples. The user input is in underline.

Example 1: 28%

Income: 150000
Your tax bracket is 28%

Example 2: 35%

Income: 1000000
Your tax bracket is 35%

Example 3: 10%

Income: 5
Your tax bracket is 10%

Assignment
The test bed is available at:

testBed cs124/assignl6 assignmentl6.cpp

Don’t forget to submit your assignment with the name “Assignment 16” in the header.

Please see page 89 for a hint.

Page 98 | 1.6IF Statements | Unit 1: Simple Program | Procedural Programming in C++

Unit 1. Simple Programs

Unit 1 Practice Test

Write a program to prompt the user for his grade on a test, and inform him if he passed:

Example

User input is underlined.

What was your grade on the last test? 92
You passed the test.

Another example

What was your grade on the last test? 59
You failed the test.

Three Functions

Your program needs to have three functions: one to prompt the user for his grade, one to display the
"passed" message, and one to display the "failed" message.

Assignment

Please copy into your home directory the course template from:
/home/cs124/tests/templateTestl.cpp
Use it to create the file for your test. Please:

e Write the program.

e Compile it.

e Run it to make sure it gives you the output you expect.

e Run the style checker and fix any style errors.

e Run the test bed and make sure that the output is exactly as expected:

testBed csl124/practicel2 practicel2.cpp
A sample solution is on:
/home/cs124/tests/practicel2.cpp

Continued on the next paje

Procedural Programming in C++ | Unit 1: Simple Programs | Unit 1 Practice Test | Page 99

Grading for Testl

Sample grading criteria:

Copy template
10%

Compile

20%
Modularization
20%

Conditional
10%

I/O
20%

Programming
Style
20%

Exceptional

100%
Template is copied

No compile errors
or warnings

Functions used
effectively in the
program

The conditional is
both elegant and
efficient

Zero test bed errors

Well commented,
meaningful variable
names, effective use
of blank lines

One warning

No bugs exist in
the declaration
or use of
functions

A conditional
exists that
determines if the
grade is sufficient
Looks the same
on screen, but
minor test bed
errors

Zero style
checker errors

Acceptable
70%

One error

One bug exists
in the function

A bug exists in
the conditional

One major test
bed error

One or two
minor style
checker errors

Continued from previous page

Developing
50%
Need a hint

Two errors

Two bugs

Elements of the
solution are
present

One or more
tests pass test
bed

Code is
readable, but
serious style
infractions

Missing

0%

Something other
than the standard
template is used
Three or more
compile errors

All the code
exists in one
function

No attempt was
made at the
solution

Program input
and output do
not resemble the
problem

No evidence of
the principles of
"elements of
style" in the
program

Page 100 |

Unit 1 Practice Test |

Unit 1: Simple Program |

Procedural Programming in C++

Unit 1 Project : Monthly Budget

Our first project will be to write a program to manage a user’s personal finances for a month. This program
will ask the user for various pieces of financial information then will then display a report of whether the user
is on target to meet his or her financial goals.

This project will be done in three phases:

e Project 02 : Prompt the user for input and display the input back in a table
e Project 03 : Split the program into separate functions and do some of the budget calculations
e Project 04 : Determine the tax burden

Interface Design
The following is an example run of the program. An example of input is underlined.

This program keeps track of your monthly budget
Please enter the following:
Your monthly income: 1000.00
Your budgeted living expenses: 650.00
Your actual living expenses: 700.00
Your actual taxes withheld: 100.00
Your actual tithe offerings: 120.00
Your actual other expenses: 150.00

The following is a report on your monthly expenses

Item Budget Actual
Income $ 1000.00 $ 1000.00
Taxes $ 100.00 $ 100.00
Tithing $ 100.00 $ 120.00
Living $ 650.00 $ 700.00
Other $ 150.00 $ 150.00
Difference $ 0.00 $ -70.00

Structure Chart

You may choose to use the following functions as part of your design:

get get get displa get get get
Income BudgetLiving ActuallLiving pray ActualOther ActualTithing ActualTax
[computeTax] [computeTithing]

Procedural Programming in C++ | Unit 1: Simple Programs | Project 1: Monthly Budget | Page 101

1 3tu)

Algorithms

main()

Main is the function that signifies the beginning of execution. Typically main() does not do anything; it just
calls other functions to get the job done. You can think of main() as a delegator. For this program, main() will
call the get functions, call the display() function, and hold the values that the user has input. The pseudocode
(described in chapter 2.2) for main() is:

main
PUT greeting on the screen

income € getincome()
budgetLiving < getBudgetLiving()
actualLiving < getActualLiving()
actualTax < getActualTax()
actualTithing € getActualTithing()
actualOther € getActualOther()

display(income, budgetLiving, actualTax, actualTithing, actualLiving, actualOther)
end

getIncome()
The purpose of getIncome() is to prompt the user for his income and return the value to main():

getincome
PROMPT for income
GET income
RETURN income
end

The pseudocode for the other get functions is the same. Note that all input from the users is gathered in the
“get” functions. Also note that there is a tab before the "Your monthly income:"

display()

Display takes the input gathered from the other modules and puts it on the screen in an easy to read format.
Display formats the output, displays some of the data to the user, and calls other functions to display the rest.
The pseudocode for display() is the following:

display (income, budgetLiving, actualTax, actualTithing, actualLiving, actualOther)
SET budgetTax € computeTax(income)
SET budgetTithing € computeTithing(income)
SET budgetOther € income — budgetTax — budgetTithing — budgetLiving
SET actualDifference < income — actualTax — actualTithing — actualLiving — actualOther
SET budgetDifference < 0

PUT row header on the screen

PUT income

PUT budgetTax, actualTax,

PUT budgetTithing, actualTithing,

PUT budgetLiving, actualLiving,

PUT budgetOther, actualOther,

PUT budgetDifference, actualDifference
end

Page 102 | DProject 1: Monthly Budget | Unit 1: Simple Program | Procedural Programming in C++

A few hints:

e A tab used for most of the indentations.

e The difference row is the difference between income and expense. Note that the difference for
Budget should be zero: you plan on balancing your budget!

e Please follow the design presented in the Structure Chart (described in chapter 2.0) for your project.
You may choose to add functions to increase code clarity (such as the budgetother and
actualDifference computation in display()).

computeTithing()
The purpose of computeTithing() is to determine amount that is required to be a full tithe payer. This does
not include fast offerings and other offerings. The pseudocode for computeTithing() is:

And after that, those who have thus been tithed shall pay one-tenth of all their intevest annually; and this
shall be a standard law unto them fovever, for my holy priesthood, saith the Lovd. D&C 119:4

computeTax()
In order to determine the tax burden, it is necessary to project the monthly income to yearly income, compute

the tax, and reduce that amount back to a monthly amount. In each case, it is necessary to determine the tax
bracket of the individual and to then apply the appropriate formula. The tax brackets for the 2006 year are:

If taxable But not over-- | The tax is:
income is over--

$0 $15,100 10% of the amount over $0

$15,100 $61,300 $1,510.00 plus 15% of the amount over 15,100
$61,300 $123,700 $8,440.00 plus 25% of the amount over 61,300
$123,700 $188,450 $24,040.00 plus 28% of the amount over 123,700
$188.450 $336,550 $42,170.00 plus 33% of the amount over 188,450
$336,550 no limit $91,043.00 plus 35% of the amount over 336,550

The pseudocode for computeTax() is the following:

computeTax (monthlylncome)
yearlylncome < monthlylncome * 12

if ($0 < yearlylncome < $15,100)

yearlyTax € yearlylncome * 0.10
if ($15,100 < yearlylncome < $61,300)

yearlyTax € $1,510 + 0.15 *(yearlylncome - $15,100)
if ($61,300 < yearlylncome < $123,700)

yearlyTax € $8,440 + 0.25 *(yearlylncome - $61,300)
if ($123,700 < yearlylncome < $188,450)

yearlyTax € $24,040 + 0.28 *(yearlylncome - $123,700)
if ($188,450 < yearlylncome < $336,550)

yearlyTax € $42,170 + 0.33 *(yearlylncome - $188,450)
if ($336,550 < yearlylncome)

yearlyTax € $91,043 + 0.35 *(yearlylncome - $336,550)

monthlyTax € yearlyTax/ 12

return monthlyTax
end

Note that this algorithm is vastly oversimplified because it does not take into account deductions and other
credits. Please do not use this algorithm to compute your actual tax burden!

Procedural Programming in C++ | Unit 1: Simple Programs | Project 1: Monthly Budget | Page 103

13U

Project 02

The first submission point due at the end of Week 02 is to prompt the user for input and display the budget
back on the screen:

This program keeps track of your monthly budget
Please enter the following:
Your monthly income: 1000.00
Your budgeted living expenses: 650.00
Your actual living expenses: 700.00
Your actual taxes withheld: 100.00
Your actual tithe offerings: 120.00
Your actual other expenses: 150.00

The following is a report on your monthly expenses

Item Budget Actual
Income $ 1000.00 $ 1000.00
Taxes $ 0.00 $ 100.00
Tithing $ 0.00 $ 120.00
Living $ 650.00 $ 700.00
Other $ 0.00 $ 150.00
Difference $ 0.00 $ 0.00

A few hints:

e A tab used for most of the indentations and nowhere else.

e There are 15 '='s under Income, Budget, and Actual.

e The user's monthly income is used both for the Budget value and for the Actual value

e The Budget value for Taxes, Tithing, and other will always be zero. Also the Difference, both Budget
and Actual, will be zero. We will compute these in the next two parts of this project.

To complete this project, please do the following:
1. Copy the course template from:

/home/cs124/template.cpp

2. Write each function. Test them individually before “hooking them up” to the rest of the program.
3. Compile and run the program to ensure that it works as you expect:

g++ project@2.cpp
4. Test the program with testbed and fix all the errors:

testBed cs124/project@2 projectl.cpp

5. Run the style checker and fix all the errors:

styleChecker project@2.cpp

6. Submit it with “Project @2, Monthly Budget” in the program header:

submit project@2.cpp

Page 104 | DProject 1: Monthly Budget | Unit 1: Simple Program | Procedural Programming in C++

Project 03

This second part of the Monthly Budget project will be to divide the program into functions and perform
some of the simple calculations:

This program keeps track of your monthly budget
Please enter the following:
Your monthly income: 1000.00
Your budgeted living expenses: 650.00
Your actual living expenses: 700.00
Your actual taxes withheld: 100.00
Your actual tithe offerings: 120.00
Your actual other expenses: 150.00

The following is a report on your monthly expenses

Income $ 1000.00 $ 1000.00
Taxes $ 0.00 $ 100.00
Tithing $ 100.00 $ 120.00
Living $ 650.00 $ 700.00
Other $ 250.00 $ 150.00
Difference $ 0.00 $ -70.00

Notice how many of the values that were previously 0.00 now are computed. You will also need to calculate
the values for Tithing, Budget Other, and Actual Difterence. You can find the formula for these calculations
carlier in the project description.

To complete this project, please do the following:

1. Start from the work you did in Project 02.

2. Fix any defects.

3. Write each function. Test them individually before "hooking them up" to the rest of the program.
4. Compile and run the program to ensure that it works as you expect:

g++ project@3.cpp

5. Test the program with testbed and fix all the errors:
testBed cs124/project@3 project03.cpp

6. Run the style checker and fix all the errors:
styleChecker project@3.cpp

7. Submit it with "Project @3, Monthly Budget" in the program header:
submit project@3.cpp

An executable version of the project is available at:

/home/cs124/projects/prje3.out

Procedural Programming in C++ | Unit 1: Simple Programs | Project 1: Monthly Budget | Page 105

13U

Project 04

This final part of the Monthly Budget project will be to add the compute tax component.

This program keeps track of your monthly budget
Please enter the following:
Your monthly income: 1000.00
Your budgeted living expenses: 650.00
Your actual living expenses: 700.00
Your actual taxes withheld: 100.00
Your actual tithe offerings: 120.00
Your actual other expenses: 150.00

The following is a report on your monthly expenses

Income $ 1000.00 $ 1000.00
Taxes $ 100.00 $ 100.00
Tithing $ 100.00 $ 120.00
Living $ 650.00 $ 700.00
Other $ 150.00 $ 150.00
Difference $ 0.00 $ -70.00

Notice how the taxes were computed to $100.00 where in Project 02 they were set to 0.00.

To complete this project, please do the following:

1. Start from the work you did in Project 03.

2. Fix any defects and implement the computeTax() function.

3. Compile and run the program to ensure that it works as you expect.:

g++ project@4.cpp

4. Test the program with testbed and fix all the errors:

testBed cs124/project@4 projecto4.cpp

5. Run the style checker and fix all the errors:

styleChecker project@4.cpp

6. Submit it with "Project @4, Monthly Budget" in the program header:

submit projecte4.cpp
An executable version of the project is available at:

/home/cs124/projects/prje4.out

Page 106 | DProject 1: Monthly Budget | Unit 1: Simple Program

Procedural Programming in C++

2.0 MOAUIATIZATIONoooviiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 108

2.1 DebUGZING.....oovviiiiiiiiiiiiii 130
2.2 Designing AlZOrithmsccocoiiiiiiiiiiii 145
2.3 LOOP SYNTAX .oovviiiiiiiiiii i 156
2.4 L0OP OULPUL ..ottt 168
2.5 LoOP DESIZN...cuoiiiiiiiiiiiiiiiiiiiicc 181
200 FILES ..o 190
Unit 2 Practice TStcooouiiiiiiiiiiiiiiiiici 207
Unit 2 Project : Calendar Program............ccocoiiiiiiiiiiiiiiiiiiiiciccc 209

Procedural Programming in C++ | Unit 2: Design & Loops | Unit 1 Practice Test

Page 107

esigk& Loop

2.0 Modularization

Sue is frustrated! She is working on a large project with a couple classmates where there must be a thousand
lines of code and three dozen functions. Some functions are huge consisting of a hundred lines of code. Some
tunctions are tiny and don’t seem to 4o anything. How can she ever make sense of this mess? If only there
was a way to map all the functions in a program and judge how large a function should be.

Objectives
By the end of this class, you will be able to:

e Measure the Cohesion level of a function.

® Measure the degree of Coupling between functions.

e Create a map of a program using a Structure Chart.

e Design programs that exhibit high degrees of modularization.

Prerequisites

Before reading this section, please make sure you are able to:

e Create a function in C+ + (Chapter 1.4).
e DPass data into a function using both pass-by-value and pass-by-reference (Chapter 1.4).

Overview

Up to this point, our programs have been relatively manageable in size and complexity. In other words, one
could conceivably keep the entire design in your head. Most interesting software problems, however, are far
too large and far too complex for this. Very soon, this become so difficult that it is impossible for any one
person or even group of people to understand everything. What is to be done?

One of the main techniques we have at our disposal to tame these size and complexity challenges is
modularization. Modularization is a collection of tools metrics, and techniques that together enable us to
reduce large problems into smaller ones.

The first tool we have at our disposal is the Structure Chart. This is a graphical representation of the functions
in a program, including how they “talk” to each other. You may have noticed an example of a structure chart
in the Unit 1 project.

The second modularization tool is a metric by which we measure the “strength” of a function. This will tell
us the degree in which a given function is dedicated to a single task. We call this metric Cohesion.

The third and final modularization tool is a metric by which we measure the complexity of the information
interchange between two functions. We call this metric Coupling.

These three tools (Structure Chart, Cohesion, and Coupling) together help a programmer to more eftectively
modularize a program so it is easier to write the code, easier to fix bugs, and easier to understand.

Page 108 | 2.0 Modularization | Unit 2: Design & Loops | Procedural Programming in C++

Structure Chart

A Structure Chart is a tool enabling us to design with functions without getting bogged down in the details
of what goes on inside the functions. This is basically a graph containing all the functions in the program with
lines indicating how the functions get called.

For example, consider a program designed to prompt the user for his age and display a witty message:

What is your age: 29
You are 29 again? I was 29 for over a decade!

T

age age

[prompt] [display]

There are three components to a Structure Chart: the function, the parameters, and how the functions call
each other (program structure).

The Structure Chart would be:

Functions

Each function in the Structure Chart is represented with a round rectangle. You specify the function by name
(remember to camelCase the name as we do with all variable and function names). Since functions are typically
verbs, there is typically a verb in the name. In the above example, there are three functions: main, prompt, and
display.

Parameters

The second part of a Structure Chart is how information flows between functions. This occurs through
parameters as well as through the return mechanism. If a function takes two parameters, then one would
expect an arrow to flow into the function with two variables listed. In the above example, the function prompt
accepts no data from main though it sends out a single piece of data: the age. Thus the following prototype
for prompt:

int prompt();

The next function is display. It sends no data back to main but accepts a single piece of data, the age. Thus
one would expect the following prototype for display:

void display(int age);

Program structure

The final part of a Structure Chart is how the functions in a program call each other. Typically, we put main
on top and, below main, all the functions that main calls. Note that you can have a single function that is called
by more than one function. In this case, arrows will be reaching this function from multiple sources. Please
see Project 1 for an example of a Structure Chart.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.0 Modularization | Page 109

Designing with Structure Charts
The Structure Chart is often the first step in the design process. Here we answer the big questions of the
program:

e What will the program do?

e What are the big parts of the program?
e How will the various parts communicate with each other?

To accomplish this, we start with the top-down approach. We start with very general questions and slowly
work to the details. Consider, for example, a program designed to play Tic-Tac-Toe. We would start with a
very general design: the program will read a board from a file, allow the user to interact with the board, and
then write the board back to the file.

[main]

*

board

\ 4
[read][interact][write]

Note how each of the functions is Cohesive (does one thing and one thing only) and has simple Coupling
(only one parameter is passed between the functions). That being said, the interact() function is probably
doing too much work. We will delegate some of that work to three other functions:

En

board board

*
board board
board
\ 4
[read][interact][write]
A
board
r board

A 4
[prompt] [move] [display]

Again, each of the functions (prompt(), move(), and display()) are Cohesive and have loose Coupling.
However, it appears that the move() function is still too complex. While it is still Cohesive, we still might want
to delegate some of the work to other functions.

Page 110 | 2.0 Modularization | Unit 2: Design & Loops | Procedural Programming in C++

The final Structure Chart for our Tic-Tac-Toe program is the following:

[main

A
board board
board
v
[read] [interact] [write]
A
board
s board
v
[prompt] [move] [display]
r,c,
board isvalid board
[verifyMove [suggestMove

There are a few things to observe about this and all Structure Charts:

7. We always put main() on top. This means that control goes from the top down, rather than following
the flow of the arrows. A common mistake new programmers make is to put main() in the center of
the Structure Chart with arrows extending in all directions. We call this “spider” Structure Charts.

8. There are seldom more than three functions called from a single function. If too many arrows emanate
from a given function, then that function is probably doing too much. There are exceptions from this
rule-of-thumb of course. One example is when all the child functions do the same type of thing. The
Structure Chart from Project 1 is an example. When in doubt, ask yourself if each function is
Functionally cohesive.

9. A Structure Chart is a tree; there are no circuits. If a function (interact() in the above example) calls
another function (prompt()), control returns to the caller when the callee is finished.

void caller() // caller will call three functions

{
int data = calleel(); // first calleel is called with the return value in data
callee2(data); // next data is sent to callee2.
callee3(data); // finally data is sent to callee3

}

[calleel]—P[callee2]—P[callee3]

Structure Chart of one function calling three in ~ ERROR: there are no circuits in a Structure
sequence Chart! When callee1() is finished, data flows
back to caller(). It cannot flow to callee2()

Procedural Programming in C++ | Unit 2: Design & Loops | 2.0 Modularization | Page 111

Example 2.0 - Count Factors

This example will demonstrate how to break a large and complex program into a set of smaller and
more manageable functions. When considering how this will be done, the principles of Cohesion and
Coupling will be considered. The resulting solution will be presented both as a structure chart and as a
set of function prototypes.

oun(

Write a program to find how many factors a given number has. To accomplish this, it is necessary to
enumerate all the values between 1 and the square root of the target number. Each of these values will
then need to be checked to see if it evenly divides into the target number.

w[qoIJ

What number would you like to find the factors for? 16
There are 4 factors in 16.

The first part of the solution is to identify the functions and how they will call each other. The following
structure chart represents one possible solution.

C)

target numFactors,
target

targegr numFactors

[prompt } [countFactors } [display }

targe isFactor

grt number

[computeSqrt][isFactor]

uonnjos

The second part is to convert this map into a set of function prototypes.

int main(); // calls prompt, countFactors, & display

int prompt(); // called by main

int countFactors(int target); // called by main, calls computeSqrt, isFactor
void display(int target, int num); // called by main

int computeSqrt(int target); // called by countFactors

bool isFactor(int x, int y); // called by isFactor

Observe how the structure chart tells you the function names, what parameters go into the functions,
and who calls a given function. This allows us to create an outline for the program.

As a challenge, try to fill in the functions for this program. The computesqrt() function may look
something like this:

#include <cmath> // for the SQRT function

int computeSqrt(int target)
{

}

dBuodyreyD

return (int)sqrt((double)target);

Page 112 | 2.0 Modularization | Unit 2: Design & Loops | Procedural Programming in C++

Cohesion

Recall that Cohesion is a metric by which we measure the “strength” of a function. A more formal definition
of Cohesion is:

Cobesion is a measuvement of how well a function performs one task.

This definition has two components:

e “ameasurement:” Cohesion is a metric, reporting on the quality of one aspect of the design.
e “performs one task:” Cohesion is a property of a single function.

A well-designed function will be completely focused on a single task. There are four different levels of
Cohesion (presented from best to worst): Strong, Extraneous, Partial, and Weak.

Strong Cohesion

The strongest and most desirable level of Cohesion is where all the code in a function is directed to one
purpose. The formal definition of Strong Cohesion is:

All aspects of a function ave divected to perform a single task,
and the task is completely represented.

There are two parts to this definition. The first is that the unit of software does nothing extra. Any extra code
thrown into a function will forfeit its classification as Strong Cohesion. The second part of the definition is
that the task or concept is completely represented. Anything that leaves part of the task undone or relies on
the client to complete the work cannot be considered Strong. Of course, every function should strive for
Strong cohesion. Observe that it does not matter how simple or complex the task is; it is Strongly Cohesive
as long as only that task is being performed.

Consider the following function:

AR R KR OK KKK SR K SR SRR KR SRR S KK SRR SR SR SR SRR SR KoK K oK

* COMPUTE PAY

* Determine an employee’s pay based on hourly wage and number of hours worked
stk ok skok stk ok kol ok skok stk ok skl sk skok stk ko sk skok stk ok kol sk skok stk skl sk sk stk ko sk sk stk kol sk sk stk sk stk skok kR sk ok

float computePay(float hours, float wage)

{
// regular pay
if (hours < 40.0)
return hours * wage;
// overtime
else
return (wage * 40.0) +
(wage * 1.5 * (hours - 40.0));
}

Observe how computepay () does one thing and one thing only: it computes pay given an employee’s hourly
wage and number of hours worked. This task is completely accomplished; no other work is needed in order
to finish this task.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.0 Modularization | Page 113

Extraneous Cohesion

The tirst weak form of Cohesion is Extraneous. Here exists something unnecessary in the unit of software. A
political analogy would be a “rider” on a bill and a sports analogy would be a “bench warmer” on a team. The
tormal definition of Extraneous Cohesion is:

At least one part of a function is not divected towards a single task.
However, the principle task is completely represented.

Streamlined software should have no extraneous functionality. An example of an Extraneous compute-tax
tunction would be one that correctly performs the calculation and then asks the user what to do with the
refund. Any time the word “and” is used to completely describe a unit of software, it is probably Extraneous
Cohesion.

Consider the following function:

A A AR AR A KA KA KA KA KA KKK A KA K AR KK AR KKK KK KK KKK K oK K
* COMPUTE PAY

* Determine an employee’s pay based on hourly wage and number of hours worked.

* This function also displays a warning message if too many hours are worked.
***/

float computePay(float hours, float wage)

{
// display error message if more than the maximum amount of work was done
if (hours > 60.9)
cout << "WARNING: Special permission is required to work more than 60 hours.\n";
// regular pay
if (hours < 40.0)
return hours * wage;
// overtime
else
return (wage * 40.0) +
(wage * 1.5 * (hours - 40.0));
}

This function completely accomplishes the task of computing the pay for a worker. Unfortunately, it also does
something that is not directly related to the task at hand. In this case, it warns if too much work is reported.
As a general rule, a function designed to “compute” should not also “display.”

Any time a function has code that is not directly related to the task at hand, there is a good chance that the
tunction is Extraneous Cohesion (or worse!). Fortunately, the fix is very easy: move the extra code to a more
appropriate location.

Page 114 | 2.0 Modularization | Unit 2: Design & Loops | Procedural Programming in C++

Partial Cohesion

Another weak form of cohesion is Partial, where a task is left incomplete. In other words, additional data or
work needs to be stored or completed elsewhere for the concept or task to be completed. Note that Partial is
not below Extraneous in the hierarchy but rather a peer. One does not improve a Partial class by making it
Extraneous. Instead, one finished the job it was designed to do. The formal definition of Partial Cohesion is:

All aspects of a function ave divected to pevform a single task,
but the task is not completely represented by the fiunction.

Partial Cohesion is particularly difficult for the client of a system because the onus is on the client to figure
out how to finish the job. It is also difficult for the author of the software because, in order to thoroughly test
the system, all possible implementations that complete the task needs to be discovered. Any time a description
of a system necessitates a detailed description of the context in which it is used, that system is a candidate for
Partial cohesion.

Consider the following functions:

AR A A A KA KKK KA KA AR KK KK A KA K K AR KKK AR KKK A KK KKK KK KK K K
* COMPUTE OVERTIME PAY

* Determine an employee’s pay based on hourly wage and number of hours worked.

* WARNING: Call computeNormalPay() if hours is less than 40
***/

float computeOvertimePay(float hours, float wage)

{

return (wage * 40.0) +
(wage * 1.5 * (hours - 40.90));
}

/***

* COMPUTE NORMAL PAY
* Determine an employee’s pay based on hourly wage and number of hours worked.

* WARNING: Call computeOvertimePay() if hours is less than 40
***/

float computeNormalPay(float hours, float wage)
{

}

return hours * wage;

Here each of the two functions accomplishes part of the task at hand. Anyone using one of these functions
will also have to use the second to get the job done.

There are two ways to fix this problem and make the function(s) Strongly Cohesive: either combine the
tunctionality into a single function or create a wrapper function that calls both of the components:

AR R KRR KK SRR SRR SRR KRR R SR S K K SR SR SR K SRR SR K ok K oK

* COMPUTE PAY

* Determine an employee’s pay based on hourly wage and number of hours worked
***/

float computePay(float hours, float wage)

if (hours < 40.90)

return computeNormalPay(hours, wage);
else

return computeOvertimePay(hours, wage);

}

This function is now Strongly Cohesive. It may be desirable to pursue a design like this when there is another
part of the program that needs computeNormalPay() or computeOvertimePay() without the other part.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.0 Modularization | Page 115

Weak Cohesion

The worst form of cohesion is Weak. One should never design for Weak Cohesion; it is a state that is to be
generally avoided. The formal definition of Weak Cohesion is:

At least one part of a function is not divected towards performing a single task.
Additionally, the task is not completely represented by the function.

In other words, weak cohesion is a combination of Extraneous and Partial. In theory, one should never come
across Weak cohesion. Alas, if only this were true.

Consider the following function:

/***

* COMPUTE PAY
* Determine an employee’s pay based on hourly wage and number of hours worked.
* This function also configures the display for money output.

* WARNING: Call computeNormalPay() if hours is less than 40
***/

float computePay(float hours, float wage)

{
// set up the display for money
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

// regular pay
if (hours < 40.9)
cout << "ERROR: This only works for hours greater than 40\n";

// compute overtime pay
return (wage * 40.0) +
(wage * 1.5 * (hours - 40.0));
}

This function exhibits Extraneous Cohesion. We can tell first because the function comment block contains
the word “also.” A subsequent inspection of the code will reveal the code to configure output for money.
Since this function does not display anything, the code clearly does not belong here.

This function exhibits Partial Cohesion because it only produces correct output if the employee’s wage is not
less than 40 hours. In this case, the program will display an error message on the screen and still produce
erroneous output.

Since this function is both Extraneous and Partial, it can be classified as Weakly Cohesive. It appears that the
programmer threw code together hoping it would work, rather than properly designed the function. On the
surface, it might seem that the best approach from this point is to add the missing functionality and remove
the extraneous parts. In practice, a better approach is to start the design process from scratch with Cohesion
in mind.

Page 116 | 2.0 Modularization | Unit 2: Design & Loops | Procedural Programming in C++

Coupling

Recall that Coupling is a metric of the complexity of the information interchange between two functions. A
more formal definition of Coupling is:

Coupling is a measurement of the complexity of the interface between functions.

This definition has two components:

e “ameasurement:” Coupling is a metric, reporting on the quality of one aspect of the design.

o “the complexity of the interfaces:” This can be summed up with the question: “how much does the
programmer need to know to successtully use and how much does the resulting software need to
do?”

e “between:” Coupling fundamentally is a measure of how different parts of a system communicate. It
is not a property of an individual function, but rather how it interacts with the rest of the system.

A well-designed interface between functions will be easy to understand and use. There are seven different
levels of Coupling (presented from best to worst): Trivial, Encapsulated, Simple, Complex, Document,
Interactive, and Superfluous.

Trivial Coupling
Trivial is the weakest or best form of Coupling. Here the client of a unit of software needs to provide no

information and receives no information from another unit of software. The formal definition of Trivial
Coupling is:

There is no information interchange between functions.

In other words, one unit may instantiate, call, or activate another, but no information is passed. Similarly, no
information can be gleaned from the timing of the function call. An example would be a function with no
return value and no parameters.

Consider the following function:

AR R KRR KK SRR SRR SRR SRR SRR S K K SR SRR SR K SRR SR K ok K o K

* DISPLAY INSTRUCTIONS

* Inform the user about the functionality of this program
***/

void displayInstructions()

{
// Inform the user about what this program will do
cout << "This program will display the status of your monthly budget.\n"
<< "The produced report will include both your projected expenditures, "
<< "as well as what you actually spent last month.\n\n";
// Inform the user about the type of data that will be requested
cout << "To accomplish this, it is necessary to prompt you for several "
<< "confidential financial details.\n"
<< "Do not worry, no confidential data will be saved in the process.\n";
}

Note that a function may have no input parameters and have no return type yet still not be Trivially Coupled.
Sometimes a hidden global variable is at play, making the function something other than Trivially Coupled.

void displayPay()
{

}

cout << '$' << pay << endl; // NOT trivially coupled!

Procedural Programming in C++ | Unit 2: Design & Loops | 2.0 Modularization | Page 117

Encapsulated Coupling

Encapsulated is a very weak form of Coupling defined by all of the parameters being in a trusted and accessible
state. In other words, there are logical checks in place to ensure that no invalid data is sent between modules.
This level makes no reference to the degree of complexity of the data nor the number of data items passed
between modules.

The formal definition of Encapsulated Coupling is:

All the information exchanged between functions
is in a convenient form and is guavanteed to be in a valid state.

Note that Encapsulation is an Object-Oriented programming topic and is therefore not a topic for CS 124.
That being said, there is a single example of encapsulated data that we have learned about thus far: Boolean
data. Since a Boolean variable can have only two states and both are, by definition, valid, it is impossible to
pass an invalid Boolean parameter. Enumerations are another validated data-type present in most languages.
Here the compiler ensures that the data is always in a valid state. These will be discussed in more detail in CS
165. With modern languages and modern programs, the most common way to achieve the validated status is
to use a class whose methods contain checks to guarantee data validity.

Consider the following function:

/***

* GET IS MALE

* Prompt the user for his/her gender and return if he/she is male
***/

bool getIsMale()

{
char input;
cout << "Please select your gender, ‘m’ for male and ‘f’ for female: ";
cin >> input;
return (input == 'm') || (input == 'M");
}

This function takes no input parameters and returns a single Boolean value. The data is in a convenient form
and is guaranteed to be valid. Note that Coupling makes no reference to information interchanges between
the user and the program; it only concerns itself with information interchange between parts of the program.

Consider this function:

AR A KRR KK R SR K SRR KRR R SRR S KK SR SR S K SRR SR KR R K o K

* DISPLAY CHILD TAX CREDIT STATUS

* Display to the user the status of their Child Tax Credit
***/

void displayChildTaxCreditStatus(bool isEligible)

if (isEligible)
cout << "You are eligible for the child tax credit.";
else
cout << "You cannot claim the child tax credit this year.";

}

This is also Encapsulated Coupling because a single Boolean value is passed into the function. From this we
can see that though a function may have Trivial input parameters, it is an Encapsulated Coupling if it has a
single Encapsulated return value (and vice versa).

Page 118 | 2.0 Modularization | Unit 2: Design & Loops | Procedural Programming in C++

Simple Coupling
Another weak form of coupling is Simple, meaning that data can be selected, interpreted, and validated easily.

Parameters consisting of simple built-in data-types such as integers or characters are often Simple, assuming
that the use of the parameter is easily specified. The formal definition of Simple Coupling is:

All the information exchanged between functions is easy to select, intevpret, and validate.

Perhaps this can be best captured with a few questions:

e Can I explain the purpose of this parameter with a few words?
e Is it intuitively obvious what this parameter represents and how it is used?
e Is it easy to validate the parameter with a simple IF statement?

Consider the following function:

/***

* PROMPT FOR INCOME
* Prompt the user for his/her monthly/yearly income.
***/
double promptForIncome(bool isMonthly)
{
// different prompt according to the value of isMonthly
if (isMonthly)
cout << "Please specify your monthly income:
else
cout << "Enter your yearly income: ";

",
)

// get the income value
double income;
cin >> income;
return income;

}

In this case, the input parameter is a Boolean value. It may seem like this is an example of Encapsulated
Coupling. Note, however, that the return value is a double. Clearly there are some values which are
inappropriate (negative values or numbers which are smaller than a cent), meaning some trivial validation
may be required. However, the return value is easy to select, interpret, and validate. This function is thus
Simple Coupling.

Consider the following function:

/***

* ELIGIBLE FOR CHILD TAX CREDIT

* Return true if eligible for a child tax credit for a given child
SRR K K K SRR SR K R KR K SR KSR SR KK K SRR K SR SR SRR S KR SR K S KR K SRk SRk R KRRk ok

bool eligibleForChildTaxCredit(double income, int ageChild)

{
// only eligible if the child is under 17 and income between $2,500 and $200,000
return (ageChild < 17) && (income >= 2500.00) && (income <= 200000.00);

}

Note that the return type makes the function a candidate for Encapsulation Coupling. However, the income
parameter as well as the ageChild parameter meet all the criteria for Simple Coupling. Since the lowest
Coupling classification of any parameter (input or output) determines the overall Coupling of the function,
this can be classified as Simple Coupling.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.0 Modularization | Page 119

Complex Coupling

A tight or bad degree of coupling is Complex. Here the function callers need to know a great deal about the
parameters in order to make a connection. The greater knowledge the callers need to have and the more work
the callers need to accomplish to make sure the connection is done correctly, the more complex the level of
coupling. While it might be worthwhile to enumerate sub-levels of Complex Coupling, it is sufficient to say
that all are bad and should be avoided. The formal definition of Complex Coupling is:

At least one piece of information is non-trivial to create, validate, or interpret.

There are many things about a parameter which could cause it to be classified as Complex. A few examples:

e Input that is interpreted as a command, requiring the callee to act in response to the command.
Understanding all possible commands is non-trivial.

e Two variables that must be in sync with each other for them to make sense, such as a list of names
and a list of addresses. Here the 4™ name on the first list corresponds to the 4™ address on the second
list. Creating and validating these two lists is non-trivial.

e Text that must be in a given format. Passing text consisting of nothing but spaces may constitute an
invalid employee last name.

Consider the following function:

[FFFAK KA K AAK K AAK KA A KA KK HAK KA KA KKK KA KA K KA KA KA KK KA KK KA A KA A K KA K KA KKK
* HANDLE ACTION

* Execute one of a collection of actions depending on the “command” parameter
***/

void handleAction(int command)

{
if (command == 1)
displayInstructions();
else if (command == 2)
openFile();
else if (command == 3)
playGame();
else if (command == 4)
exitProgram();
else
cout << "Invalid or unknown command: " << command << endl;
}

Notice how the parameter is a single integer. This may seem to be a candidate for Simple Coupling. However,
the integer is not used in trivial way. Both the caller and the callee share a complex command language were
actions are represented with numbers. If the language is expanded or reduced, both the caller and the callee
will need to change their code to accommodate the change. This makes the two functions tightly Coupled.

Consider the following function:

AR A KA KA KK A KA KA KA KA KA KKK AR KA KK K AR K K K KK A KK oK K KKK KK K K
* DISPLAY FULL NAME

* Display the user’s full name in the format: last name, first name.
***/

void displayFullName(char namelLast[256], char nameFirst[256])
{

}

cout << namelLast << ", << nameFirst;

This seemingly simple function is actually incomplete. What if the last name string was empty? What if it
contained a newline character or a comma? Dealing with all the formatting needs of a last name (no spaces,
only limited punctuation, no newline characters, no numbers) is non-trivial to validate. That makes this
tunction’s Coupling level Complex.

Page 120 | 2.0 Modularization | Unit 2: Design & Loops | Procedural Programming in C++

Document Coupling

Another tight level of Cohesion is Document. Here data conforming to some language is passed from a
producer to a consumer. Note that the producer could be the caller or the callee, depending on the direction
of information flow. The important thing to note is that both the producer and the consumer need to fully
understand the intricacies of the shared language. The formal definition of Document Coupling is:

At least one piece of information contains a vich language
including syntactic and/ov semantic rules.

On the surface, this may seem rather difficult to understand and perhaps not an important case worth
considering. In practice, however, it is more common than you may think.

In order to demonstrate Document Coupling, it is necessary to use C++ langauge constructs that will not
be introduced for several chapters. Just pay attention to the commands and try to get the jist of the algorithm.

/***

* EXECUTE ASSEMBLY COMMAND

* Take action according to an assembly opcode such as “ADD 4”
***/

void executeAssemblyCommand(string opcode, int & register)

{
// get “ADD” from “ADD 4”
string command = opcode.substr(0, 3);

// get “4” from “ADD 4”
string parameter = opcode.substr(4);

// execute the command.

if (command == "ADD")

register += integerFromString(parameter);
if (command == "SUB")

register -= integerFromString(parameter);
. and so on ..

}

The above function needs to understand the complete assembly language and syntax in order to properly
handle the input in the opcode parameter. Ths language certainly has “rich syntatic and sematic rules.”

Another example, this time taken from the Unit 3 project. Consider the game MadLib® where a story has
placeholders in which the player of the game will insert his or her own answers to certain questions. The game
starts with a raw story similar to the following:

I have a very :adjective pet :animal :
Here the user will be prompted for an adjective and an animal:

Adjective: silly
Animal: great white shark

The result of this game will be a completed story with the user’s provided prompts:

I have a very silly pet great white shark.

A function interpreting the raw story and generating a completed story will need to exhibit Document
Coupling because it will need to understand how to interpret all the prompts.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.0 Modularization | Page 121

Interactive Coupling

Interactive Coupling is closely related to Document with an additional component: the information exchange
between components is ongoing rather than a single one-time event. Interactive Coupling is usually
characterized by a session where conversations begin, the participants react to each other, and conversations
are terminated. There are usually syntactic and sematic rules that need to be followed to correctly maintain
the conversation. Another way to look at Interactive coupling is a sequence of Document interactions
involving maintenance of state by both parties. The formal definition of Interactive Coupling is:

There exists a communication avenue between units of software involving non-trivial
dialogs, sessions, or intevactions.

It is difficult to show an example of Interactive Coupling using the programming tools presented in CS 124.
The main problem is that the two functions exhibiting this interaction need to maintain state. In other words,
they both need to keep track of the status of the conversation. To demonstrate this, consider a function called
send() which sends messages to another function or entity in the system.

/***
* SEND EMAIL
* Send an e-mail message using the SMTP protocol

* Here sendEmail() is demonstrating Simple Coupling whereas send() is Interactive
***/

void sendEmail(char data[256])
{

// initiate the conversation
char *response = send("HELO");

// from and to:
response = send("MAIL FROM:<sender@sourcedomain.com>");
response = send("RCPT TO:<recipient@destinationdomain.com>");

// send body of the message
response = send(data);

// indicate we are done
response = send("\n.\n");
response = send("QUIT");

}

The SMTP e-mail protocol involves several many interactions between the client and the server. Notice that
all of these interactions occur through the same send() function. Here the server responds to messages
differently depending on the state of the message. Thus the send() function is exhibiting Interactive Coupling.

Page 122 | 2.0 Modularization | Unit 2: Design & Loops | Procedural Programming in C++

Superfluous Coupling

The tightest and therefore worst level of coupling is Superfluous. The formal definition of Interactive
Coupling is:

At least one piece of data or information is passed between functions unnecessarily.

This is the only level of coupling that makes a reference to the amount of data passed between functions. Data
passing between functions is only bad if that data is not necessary. There are two important parts to this
definition: what is unnecessary and what is data/information passing. The unnecessary component is
completely domain specific. For example, if a function has read/write access to an asset when read-only is
required, then the write aspect is unnecessary and the coupling can be classified as superfluous. For example,
consider the following function:

/***

* PROMPT GRADE

* Prompt the user for his/her GPA
***/

float promptGrade(float grade)

{
cout << "What is your GPA. Please enter a value between 0.0 and 4.0: ";
cin >> grade;
return grade;

}

On the surface, this appears to be Simple Coupling: the grade parameter needs to be validated before it is
used (what if the user selected -1.0 as the GPA?), but that validation can be easily accomplished. However,
there is a problem. Data needs to leave this function, but it does not need to enter the function. For some
reason, there is an input parameter called grade. This function would be Simple Coupling if grade was a local
variable. However, because it is an unnecessary input parameter, this is Superfluous Coupling.

The “passing” component of the definition is a bit more difficult to explain. Consider the range of scope for
a language like C++ language (from small to large): block, local variable, one-way parameter (by-value),
two-way parameter (by-reference), and global variables. There are legitimate uses for each of these scope
levels in many applications. However, if a function utilizes a scope larger than is necessary, then superfluous
coupling exists. The degree of superfluosity depends on the number of scope levels beyond that which is
necessary that was utilized in a given application. Consider the following function:

/***

* DISPLAY USER HEIGHT

* Display the height of the user in convenient units
***/

void displayUserHeight(float heightFeet)

{
// display the height in imperial units
if (useImperialUnits)
cout << heightFeet << " feet”;
// display the height in the metric system
else
cout << (heightFeet * ©.3048) << " meters";
}

This function may appear to be Simple Coupling because there are no output parameters and the single input
parameter is easy to verify. However, there is another variable referenced (useImperialUnits) not declared in
this function. This function is therefore a global variable, a scope much larger than necessary. The reference
to this variable makes the entire function Superfluous Coupling.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.0 Modularization | Page 123

Problems

Problem 1

Create a list of the levels of Cohesion from best on the top to worst on the bottom.

Please see page 117 for a hint.

Problem 2

Classify the form of Cohesion from the following example of code:

void displayGPA(float gpa)
{
// configure the output so the GPA appears correctly
cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(1);

// display the GPA
cout << gpa;

Answer:

Please see page 113 for a hint.

Problem 3

Classify the form of Cohesion from the following example of code:
float getGPA()
// get the student’s GPA
float gpa;
cin >> gpa;
// prompt for the number of credits

cout << "Please enter the number of credits you are taking this semester: ";
return gpa;

Answer:

Please see page 113 for a bint.

Page 124 | 2.0 Modularization | Unit 2: Design & Loops | Procedural Programming in C++

Problem 4

Create a list of the levels of Coupling from best on the top to worst on the bottom.

Problem 5

Classify the form of Coupling from the following example of code:

void displayGreeting()

{
// prompt for name
char name[256];
cout << "What is your name? ";
cin >> name;
// display the greeting
cout << "Hello, " << name << " how are you today?\n";
}
Answer:

Please see page 117 for a hint.

Problem 6

Classify the form of Coupling from the following example of code:

void setGender()

{
char input;
cout << "Are you male? ";
cin >> input;
isFemale = (input == 'n') || (input == 'N');
}
Answer:

Please see page 113 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops

Please see page 113 for a bint.

2.0 Modularization

Page 125

Problem 7

Match the Cohesion name with the definition:

Strong At least one part of the function is unnecessary to the main task at hand
Extraneous Components of the function are irrelevant and parts of the function are missing
Partial Does one thing completely and one thing only

Weak The main task of the function is not completely done

Please see page 113 for a hint.

Problem 8

Match the Coupling name with the definition:

Trivial A dialog exists between functions that involves multiple interactions

Encapsulated Information is passed between functions that involves a complex language

Simple At least one parameter is non-trivial to create, validate, or interpret

Complex All the parameters are in a convenient form and is guaranteed to be in a valid state
Document At least one parameter is passed between functions unnecessarily

Interactive There is no information interchange between functions

Superfluous Al the parameters are easy to select, interpret, and validate

Problem 9

Classify the form of Cohesion from the following example of code:

Please see page 113 for a hint.

float getGPA()

{
// set up the display for GPA
cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(1);
// prompt for GPA
float gpa;
cout << "Enter your GPA: ";
cin >> gpa;
return gpa;

}

Answer:

Please see page 113 for a bint.

Problem 10

Classify the form of Cohesion from the following example of code:

double getIncome()
{

"

cout << "Enter your income: ";
return 0.0;

Answer:

Please see page 113 for a bint.
Page 126 | 2.0 Modularization | Unit 2: Design & Loops | Procedural Programming in C++

Problem 11

Identify the type of Coupling that the following function exhibits:

float absoluteValue(float value)

{
if (value >= 0)
return value;
else
return -value;
¥
Answer:

Please see page 117 for a hint.

Problem 12

Identity the type of Coupling that the following function exhibits:

char adjustedGrade(char grade, bool cheated)

{
if (cheated)
return 'F';
else
return grade;
}
Answer:

Please see page 117 for a hint.

Problem 13

Draw a Structure Chart to convert Fahrenheit to Celsius. The program has three functions besides main():

float getTemperature();
float convert(float fahrenheit);
void display(float celsius);;

Answer:

Please see page 112 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.0 Modularization | Page 127

Problem 14

Draw a Structure Chart to represent the following problem: prompt the user for his hourly wage and
number of hours worked. From this, compute his weekly pay (taking time-and-a-half overtime into
account). Deduct from his pay his tax and tithing. Finally, display to the user how much money he has left

to spend:

Please see page 112 for a hint.

Problem 15

Sue wants to write a program to help her determine how much money she is spending on her car.
Specifically, she wants to know how much she spends per day having the car sit in her driveway and how
much she spends per mile driving it. This program will take into account periodic costs such as devaluation,
insurance, and parking. It will also take into account usage costs such as gas, repair costs, and tires. Draw
a Structure Chart to represent this program.

Please see page 112 for a hint.

Page 128 | 2.0 Modularization | Unit 2: Design & Loops | Procedural Programming in C++

Your assignment is to create three Structure Charts representing how you would solve three programming
problems. In these examples, you are not concerned with how you would implement each individual
function. Instead, you want to identity what the function will do (Cohesion), how information will pass
between them (Coupling), and how the functions call each other.

Problem 1: Compute grade

The first problem is to create a Structure Chart for a program to convert a number grade (ex: 88%) into a
letter grade (ex: B+). Consider the following example (input is Underlined):

What is your grade in percent: 88
Your grade is B+

Problem 2: Compute tithing

The second problem is designed to help a child set aside part of his allowance for tithing. This program
will prompt the user for his allowance, figure out how much is left after tithing is taken out, and display

the results.

What is your allowance? $10.50
You get to spend: $9.45

Problem 3: Currency
The final problem is designed to help an international traveler convert his money to various currencies.
After prompting him for the amount to be converted, the program will display how many British pounds,
Euros, or Japanese Yen he will have:
How much money do you want to convert? $100.00
British Pounds: £61.50

Euros: €70.09
Japanese Yen: ¥8079.06

Please bring these Structure Charts into class on a sheet of paper (face-to-face students) or take a picture
and submit it electronically (online students). Don’t forget to put your name on your assignment!

Please see page 112 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.0 Modularization | Page 129

2.1 Debugging

Sam has just spent an hour and a half in the lab tracking down a bug that turned out to be a small typo. What
a waste of time! There are so many better things he could have been doing with that time (such as trying to
get a date with that cute girl in his computer class named Sue). If only there was some way to get his program
to tell him where the problems were, then this whole process would be much simpler!

Objectives
By the end of this class, you will be able to:

e Create asserts to catch many of the most common programmer problems.
e Use #define to move constants to the top of a program.

e Use #ifdef to create debug code in order to test a function.

e Write a driver program to verify the correctness of a function.

e Create stub functions to make an outline of a large program.

Prerequisites

Before reading this section, please make sure you are able to:

e Create a function in C+ + (Chapter 1.4).

e Convert a logic problem into a Boolean expression (Chapter 1.5).

e Dass data into a function using both pass-by-value and pass-by-reference (Chapter 1.4).
e Measure the cohesion level of a function (Chapter 2.0).

® Measure the degree of coupling between functions (Chapter 2.0).

e Create a map of a program using structure charts (Chapter 2.0).

Asserts

When writing a program, we often make a ton of assumptions. We assume that a function was able to perform
its task correctly; we assume the parameters in a function are set up correctly; and we assume our data
structures are correctly configured. A diligent programmer would check all these assumptions to make sure
his code is robust. Unfortunately, the vast majority of these checks are redundant and, to make matters worse,
can be a drain on performance. A method is needed to allow a programmer to state all his assumptions, get
notified when the assumptions are violated, and have the checks not influence the speed or stability of the
customer’s program. Assertions are designed to fill this need.

An assert is a check placed in a program representing an assumption the developer thinks is always true. In
other words, the developer does not believe the assumption will ever be proven false and, if it does, definitely
wants to be notified. An assert is expressed as a Boolean expression where the true evaluation indicates the
assumption proved correct and the false evaluation indicates violation of the assumption. Asserts are evaluated
at run-time verifying the integrity of assumptions with each execution of the check.

An assert is said to fire when, during the execution of the program, the Boolean expression evaluates to false.
In most cases, the firing of an assert triggers termination of the program. Typically the assert will tell the
programmer where the assert is located (program name, file name, function, and line number) as well as the
assumption that was violated.

Page 130 | 2.1 Debugging | Unit 2: Design & Loops | Procedural Programming in C++

Assertions have several purposes:

e Identify logical errors. While writing a program, assertions can be helpful for the developer to
identify errors in the program due to invalid assumptions. Though many of these can be found
through more thorough investigation of the algorithm, the use of assertions can be a time saver.

» Find special-case bugs. Testers can help find assumption violations while testing the product
because their copy of the software has the asserts turned on. Typically, developers love this class of
bugs because the assert will tell the developer where to start looking for the cause of the bug.

e Highlight integration issues. During component integration activities or when enhancements
are being made, well-constructed assertions can help prevent problems and speed development time.
This is the case because the asserts can inform the programmer of the assumptions the code makes
regarding the input parameters

Assertions are not designed for:

e User-initiated error handling. The user should never see an assert fire. Asserts are designed to
detect internal errors, not invalid input provided by the user.

e File errors. Like user-errors, a program must gracefully recover from file errors without asserts
tiring.

Syntax
Asserts in C++ are in the cassert library. You can include asserts with:

#include <cassert>

Since asserts are simply C++ statements (more precisely, they are function calls), they can be put in just
about any location in the code. The following is an example assert ensuring the value income is not negative:

assert(income >= 0);

It this assert were in a file called budget.cpp as part of a program called a.out in the function called
computeTithing, then the following output would appear if the assumption proved to be invalid:
a.out: budget.cpp:164: float computeTithing(float income): Assertion “income >= @'

failed.
Aborted

It is important that the client never sees a build of the product containing asserts. Fortunately, it is easy to
remove all the asserts in a product by defining the NDEBUG macro. Since asserts are defined with pre-processor
directives, the NDEBUG macro will effectively remove all assert code from the product at compilation time. This
can be achieved with the following compiler switch:

g++ -DNDEBUG file.cpp

e
% Sue’s Tips
ﬁé[, The three most common places to put asserts are:
1. At the top of a function to verify that the passed parameters are valid.

2. Just after a function is called, to ensure that the called function worked as expected.
3. Whenever any assumption is made.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.1 Debugging | Page 131

Example 2.1 - Asserts

This example will demonstrate how to add asserts to an existing program. This will include how to
brainstorm of where bugs might exist, common checkpoints where asserts may reside, and how to
interpret the messages that asserts give us.

ownd(

Given a program to compute how much tithing an individual should pay given an income, add asserts
to catch common bugs.

What is the income? 100
Tithe for $100 is $10

wR[qoIJ

The first part is to include the assert library:
#include <cassert>
Next, we will add asserts to the computeTithe() function.

float computeTithing(float income)

{
assert(income >= 0.00); // this only works for positive income
m . .
o, // compute the tithing
=t float tithe = income * 0.10;
o assert(tithe >= 0.00); // The Lord doesn't owe us, right?
=] assert(income > tithe); // 10% should be less than 100%, right?
// return the answer
return tithe;
}
Observe how the asserts both validate the input (income >= @) and perform sanity checks that the
resulting output is not invalid (tithe >= 0.0 as well as income > tithe). The first assert is designed to
make sure the function is called correctly. The second is to make sure the math was performed correctly..
9_ As a challenge, add asserts to your Project 1 solution. Would any of these have caught bugs you ran
M into when you were writing your code?
%)
=]
a3
o
"<l The complete solution is available at 2-1-asserts.cpp or: (g
o
E: /home/cs124/examples/2-1-asserts.cpp
72}
o

Page 132 | 2.1 Debugging | Unit 2: Design & Loops | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-1-asserts.html
https://video.byui.edu/media/2.1+-+Asserts/0_5ze5c239/18442462

#define

The #define mechanism is a way to get the compiler to do a search-replace though your file before the program
is compiled. This is useful for values that never change (like 7). We will also use this to do more advanced
things. An example of #define in action is:

Before expansion After expansion

include <iostream> include <iostream>
using namespace std; using namespace std;

ttdefine PI 3.14159

/********************************* /*********************************
* MAIN * MAIN
* Simple program to * Simple program to
* demonstrate #define * demonstrate #define
int main() int main()
cout << "The value of pi is " cout << "The value of pi is "
<< PI << 3.14159
<< endl; << endl;
return 0; return 0;

Note that #defines are always ALL_CAPS according to our style guidelines.

Observe how the value in the #define can be used much like a variable. In many ways, it is like a variable with
one important exception: it can’t vary. In other words, the value represented by the #define is guaranteed to
not change during the course of the program.

There is another way to make a variable that does not change: a constant variable:
const float PI = 3.14159;

Observe how the syntax is similar to any other variable declaration, including using the assignment
operator with the semicolon. It is important to realize that this is not a global variable: the const
modifier guarantees that the value in the variable does not change. Global variables are only dangerous
because they can change in an unpredictable way

A few common uses of #defines are:

e Constants: Values that never change. Through the use of #defines, it is much easier to verify that
all instances of the constant are the same in the program. We don’t want to have more than one
version of 7 for example.

Static file names: Some file names, such as configuration files, are always in the same location. By
using a #define for the file name, it is easy to see which files the program accesses and to ensure that
all the parts of the code refer to the same file.

We can also put parameters in #define macros. Here, the syntax is similar to that of a function:

#define NEGATIVE(x) (-x) // also ALL_CAPS

Procedural Programming in C++ | Unit 2: Design & Loops | 2.1 Debugging | Page 133

Again, this will expand just before compilation just like the non-parameter #define does. Consider the

tollowing code:

Before expansion After expansion

#include <iostream>
using namespace std;

#define ADD_TEN(x) (x + 10)

/*****************************

* MAIN

* #tdefine expansion demo
*****************************/

int main()

{
int value = 5;
cout << value

#include <iostream>
using namespace std;

/*****************************

* MAIN

* #define expansion demo
*****************************/

int main()

{
int value = 5;
cout << value

<« "+ 10 =" <« "+ 10 ="
<< ADD_TEN(value) << (value + 10)
<< endl; << endl;
return 0; return 0;
} ¥

For more information about the #define pre-processor directive, please see:

#define

#ifdef

Another pre-processor directive (along with #define and #include) is the #ifdef. The #ifdef preprocessor
directive tells the compiler to optionally compile some code depending on the state of a condition. This makes
it possible to have some code appear only in a Debug version of the program. Consider the following code:

/***

* COMPUTE TAX

* Compute the monthly tax
***/

float computeTax(float incomeMonthly)
{

float incomeYearly = incomeMonthly * 12.0;

#ifdef DEBUG // the code between #ifdef and #endif
cout << "incomeYearly == " // only gets compiled if the
<< incomeYearly << endl; // DEBUG macro is defined
#tendif // DEBUG

float taxYearly;
// tax code
#ifdef DEBUG // observe how we format the output so we
cout << "taxYearly == " // can tell which variable we are
<< taxYearly << endl; // looking at in the output stream

#endif // DEBUG

return taxYearly / 12.0;
}

In this example, we have debug code displaying the values of key variables. Note that we don’t always want
this code to execute; test bed will certainly complain about the unexpected output. Instead, we only want the

Page 134 | 2.1 Debugging | Unit2: Design & Loops | Procedural Programming in C++

http://www.cppreference.com/wiki/preprocessor/define

code to run when we are trying to fix a problem. The #ifdef mechanism allows this to occur. We can “turn
on” the debug code with:

t#tdefine DEBUG

If this appears before the #ifdefs, then all the code will be included in the compilation and the couts will work
as one expects. This allows us to have two versions in a single code file: the ship version containing code only
for the customer to see, and the debug version containing tons of extra code to validate everything. :

-lll*lg!ﬂigli!::u!!llllll

An #define can also be turned on at compilation time without ever touching the source code.
We do this by telling the compiler we want the macro defined:

g++ -D<MacroName>

For example, if you want to turn on the DEBUG macro without using #define DEBUG, this can be
accomplished with:

g++ -DDEBUG file.cpp

|
As an exercise, please take a close look at (/home/cs124/examples/2-1-debugOutput.cpp). Please see the

tollowing link for more detail on how #ifdef works.
#ifdef

The aforementioned #ifdef technique to display debug code can be tedious to write.

Fortunately there is a more convenient way to do this. First, start with the following macro at the top |
of your program:

#ifdef DEBUG
#define Debug(x) x
#telse

#tdefine Debug(x)
t#tendif

This macro actually does something quite clever. If DEBUG is defined in your program, then anything
inside the debug() statement is executed. If DEBUG is not defined, then nothing is executed. Consider the
following code:

void function(int input)

{
}

Debug(cout << "input == " << input << endl);

If peBUG is defined, then the above is expanded to:

void function(int input)

{
¥

"

cout << "input == << input << endl;

If bEBUG is not defined, we get:

void function(int input)

{

¥
I E————————————————————————————————— ———————

Procedural Programming in C++ | Unit 2: Design & Loops | 2.1 Debugging | Page 135

http://www.cppreference.com/wiki/preprocessor/preprocessor_if

Example 2.1 - Debug Output

This example will demonstrate how to add COUT statements to get some insight into how the program
is behaving. It will do this by utilizing #define directives, #ifdef directives, and asserts.

oun(

Write a program to compute an individual’s pay taking into account time-and-a-half overtime.

What is your hourly wage? 12
How many hours did you work? 39.5
Pay: $ 474.00

From this example, insert debug code to help discover the location of bugs.

What is your hourly wage? 12

How many hours did you work? 39.5
main: hourlyWage: 12

main: hoursWorked: 39.5
computePay(12.00, 39.50)
computePay: Regular rate

Pay: $ 474.00

w[qoIJ

The first thing to do is to add a mechanism to easily put debug code in the program.

#ifdef DEBUG
#tdefine Debug(x) x
#else

#tdefine Debug(x)
#tendif // !'DEBUG

Now, if DEBUG is not defined, none of the code in Debug() gets executed. If it is defined, then we can get
all our debug output. The computepay() function with Debug() code is:

float computePay(float hourlyWage, float hoursWorked)

{
Debug(cout << "computePay(" << hourlyWage << ", " << hoursWorked << ")\n");
g’ float pay;
e
. // regular rate
8 if (hoursWorked < CAP)
{
Debug(cout << "computePay: Regular rate\n");
pay = hoursWorked * hourlyWage; // regular rate
}
// overtime rate
else
{
Debug(cout << "computePay: Overtime\n");
pay = (CAP * hourlyWage) + // first 40 normal
((hourshWorked - CAP) * (hourlyWage * OVERTIME)); // balance overtime
}
return pay;
}
*<ll The complete solution is available at 2-1-debugOutput.cpp or: Tuy
o
E: /home/cs124/examples/2-1-debugOutput.cpp
@
o

Page 136 | 2.1 Debugging | Unit 2: Design & Loops | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-1-debugOutput.html
https://video.byui.edu/media/2.1+-+Debug+Output/0_c6ixiq4k/18442462

Driver programs

Drivers are special programs designed to test a given function. This is an exceedingly important part of the
programming process. An aerospace engineer would never put an untested engine in an airplane. He would
instead mount the engine on a testing harness and run it through the paces. Only after exhaustive testing
would he feel confident enough to put the engine in the airplane. We should also treat new functions with
skepticism. When we validate functions before integrating them into the larger program, it is far easier to
localize problems. After the function has been validated, then we can safely copy it to the project. Typically
drivers consist of just the function main() and the function to be tested. Consider, for example, the prototype
for the function computePay():

float computePay(float hourlyWage, float hoursWorked);

A driver program for computePay () might be:

/**************************************

* MAIN

* Simple driver for computePay()

**************************************/

int main()

{
float wage;
cout << "wage: "; // get the data as quickly as possible
cin >> wage;

float hours;
cout << "hours: "; // again, just the simplest prompt
cin >> hours;

cout << "computePay("

<< "hourlyWage = " << wage << ", " // show what was passed
<< "hoursWorked = " << hours
<« ") ="
<< computePay(wage, hours) // show what was returned
<< endl;

return 0;

}

Observe how the driver program is just a bare-bones program whose only purpose is to prompt the user for
the data to pass to the function and to display the results. When you use the driver-program development
methodology, you:

1. Start with a blank file. The only thing this program will do is test your function.
2. Write the function. As long as the coupling is loose, this should not be too complex.
3. Create a main() that only calls your function. This is typically done in three steps:
a. First call your function with the simplest possible data.
b. If your function requires any parameters, create simple cin statements in main() to fetch that
data directly from the user.
c. If your function returns something, display the results directly on the screen so it is easy to
verify how the function responded to input.
4. Test your function with a variety of input. Start with simple input and work to more complex
scenarios.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.1 Debugging | Page 137

Example 2.1 - Driver

@l This example will demonstrate how to write a simple driver program to test a function we used in
& .
< Project 1: computeTax().
o
The drive program exists entirely in main(). We start with the prototype of the function we are testing:
double computeTax(double incomeMonthly);
There will be two parts: fetching the data from the user for the function parameters, and displaying the
output of the function.
/***
* MAIN
* A simple driver program for computeTax()
***/
int main()
L {
= // get the income
=R double income; // the inputs to the function being
g cout << "Income: "; // tested is gathered directly from
cin >> income; // the user and sent to the function
// call the function and display the results
cout << "computeTax(" << income << ") == " // what we are sending...
<< computeTax(income) // what the output is
<< endl;
return 0;
}
Driver programs are very streamlined and simple. Once we have tested our function, we can safely
throw them away.
9_ As a challenge, write a driver program for computeTithe() from your Project 1 code.
o
—_
o
=
a9
o
‘<l The complete solution is available at 2-1-driver.cpp or: Xyy
o
E /home/cs124/examples/2-1-driver.cpp
«»
e}

Page 138 | 2.1 Debugging | Unit 2: Design & Loops | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-1-driver.html
https://video.byui.edu/media/2.1+-+Driver+Program/0_sffcck4n/18442462

This process works well when you are in the development phase of the project. You can also use the driver-
program technique when you are in the testing and debugging phase of the project. This can be accomplished
by modifying our main() to be a driver for any function in the program. Recall the computeTax() function
trom Project 1. We might think we have worked out all the bugs of the functions before they were integrated
together. When running the program, however, it becomes apparent that something is broken.

Consider the following main() from Project 1 after it has been modified to test computeTithing(). Note how
we use a return statement to ensure only the top part of the function is executed.

/**

* MAIN

* Keep track of a monthly budget
***/

int main()

{
double incomeTest = getIncome(); // use the get function or a cin
cout << computeTithing(incomeTest) << endl; // simple display of the output
return 0; // return ensures we exit here and

// only test computeTithing()
// rest of main below here

// instructions

cout << "This program keeps track of your monthly budget\n";
cout << "Please enter the following:\n";

// prompt for the various data

double income getIncome();

double budgetLiving = getBudgetLiving();
double actuallLiving = getActuallLiving();
double actualTax = getActualTax();
double actualTithing = getActualTithing();
double actualOther = getActualOther();

// display the results

display(income, budgetlLiving, actualTax, actualTithing,
actuallLiving, actualOther);

return 0;

}

The driver program technique has been used for almost all the assignments we have done this semester.

Stub functions

A stub is a placeholder for a forthcoming replacement promising to be more complete. In the context of
designing and building a program, a stub is a tool enabling us to put a placeholder for all the functions in our
structure chart without getting bogged down with how the functions will work. In other words, stubs allow
us to:

e Get Started: Stubs allow us to get the design from the Structure Chart into our code before we
have figured out how to implement the functions themselves. This helps answer the question “how
do I start on this project?”

» Figure out data flow. Because stubs include the parameters passed between functions, you can
model information flow early in the development process.

e Always have your program compile. A program completely stubbed-out will compile even
though it does not do anything yet. Then, as you implement individual functions, any compile
errors you encounter are localized to the individual function you just implemented.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.1 Debugging | Page 139

Consider the computeTax function from Project 1. The following would be an example of a stub:
float computeTax(float income)

// stub for now...
return 0.0;

Example 2.1 - Stub Functions

This example will demonstrate how to turn a structure chart into stub functions.

ownd(

Write stub functions for the following structure chart.

E

age age

[prompt] [display

The stubbed version of this program would be:

w[qoIJ

—

int prompt() // don’t bother with the function comment block

{ // with stubbed functions. We will do them later
return 9; // make sure to return some value because the return

} // type is not void in this function

void display(int age) // all the parameters need to be present in the stub
{ // even if the body of the functions are empty.

}

int main() // make sure the stubs call all the children

{ // functions so we can make sure the data flow
display(prompt()); // works correctly. This should enable us to
return 0; // implement the functions in any order we choose

uonnjos

}
Observe how the stubbed functions consist of:

e Prototypes: the function name, return type, and parameters.

e Empty body: except for a return statement, the body is mostly empty.

¢ Called functions: include code to call the child functions. It is OK to use dummy
parameters if none are know

As a challenge, try to stub Project 1. A sample solution is available at 2-1-stubbed.cpp or:

/home/cs124/examples/2-1-stubbed.cpp

J8uareyn

Page 140 | 2.1 Debugging | Unit 2: Design & Loops | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-1-stubbed.html

Problem 1

Which of the following most clearly illustrates the concept of coupling?

e The parameters passed to a function

e The task that the function performs

e The subdivision of components in the function or program

e The degree in which a function can be used for different purposes

Problem 2

Identify the type of coupling that the following function exhibits:

float lastGrade = 0.9;
float getGPA()

cout << "What is your grade? ";
cin >> lastGrade;

return lastGrade;

Y
Answer:

Please see page 117 for a hint.

Problem 3

Create a stub for the following function:

void displayIncome(float income)

{
// configure output to display money
cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(2);

// display the income

cout << "Your income is: $"
<< income
<< endl;

}s
Answer:

Procedural Programming in C++ |

Unit 2: Design & Loops

Please see page 117 for a hint.

Please see page 140 for a bint.

2.1 Debugging

Page 141

Problem 4

Create a stub for the following function:

float getIncome()

{
float income;
// prompt
cout << "Please enter your income: ";
cin >> income;
return income;

¥

Answer:

Please see page 140 for a hint.

Problem 5

Create a driver program for the following function:
float sqrt(float value);

Answer:

Please see page 138 for a hint.

Problem 6

Create a driver program for the following function:

void displayTable(int numDaysInMonth, int offset);

Answer:

Please see page 138 for a hint.

Page 142 | 2.1 Debugging | Unit 2: Design & Loops | Procedural Programming in C++

Problem 7

Create an assert to verify the following variable is within the expected range:

float gpa

Answer:

Please see page 132 for a hint.

Problem 9

What asserts would you add to the beginning of the following function:

void displayDate(int day, int month, int year);

Answer:

Please see page 49 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.1 Debugging | Page 143

Sue wants to write a program to help her determine how much money she is spending on her car.
Specifically, she wants to know how much she spends per day having the car sit in her driveway and how
much she spends per mile driving it. While working through this problem, she came up with the following

structure chart:
[main }

. . A
costPeriodic costUsage
ostPeriodic
costUsage
N\ N\
[getPeriodicCost [getUsageCost [display }
J J
K\ ileage
cost - N - N
\\\ promptDevalue promptMileage
& J & J
cost
4 A 4 A
promptInsurance promptGas
& J & J
4 A 4 A
promptParking promptRepairs
& J & J
4 A
promptTires
g J/

Please create stub functions for all the functions in Sue’s program. In other words, write a program to stub
out every function represented in the above structure chart. If a function calls another function (ex:
getPeriodicCost() calls promptParking()), then make sure that function call is in the stub. Finally, make sure
all the parameters and return values from the structure chart are represented in the stub functions.

One final note: you do not need to have function headers for each individual function.

Please:

e Create stub functions for all the functions mentioned in the structure chart.
e If you were able to do this, then enter the following code in the function display():

cout << "Success\n";

e Use the following testbed:

testBed cs124/assign21 assign2l.cpp

e Submit to Assignment 21

Please see page 140 for a bint.

Page 144 | 2.1 Debugging | Unit 2: Design & Loops | Procedural Programming in C++

esign & Loops

2.2 Designing Algorithms

Sue just spent a half hour writing the code for a certain function before she realized that she got the design
all wrong. Not only was her code broken, but her entire approach to the problem was all wrong. Sue is
trustrated: writing code is hard! If only there was a way to design a function without having to go through
the work of getting it to compile...

Objectives
By the end of this class, you will be able to:

e Recite the pseudocode keywords.
e Understand the degree of detail required for a pseudocode design.
* Generate the pseudocode corresponding to a C+ + function.

Prerequisites

Before reading this section, please make sure you are able to:

e Create a map of a program using structure charts (Chapter 2.0).

Reading
All of the reading in this section will consist of the pseudocode videos:

e Design First: This video discusses why it is important to design a problem before the
implementation is begun.
e When to Design: This video will discuss different times in the software development process when

Xy design activities are most effective.
% e Different Design Approaches: This video will introduce four techniques to drafting a design: the
paragraph method, flowchart, structure diagram, and pseudocode.
e Using Pscudocode: How pseudocode can be used as a tool to more effectively write software.

e Rules of Pseudocode: The conventions and rules of pseudocode.

e DPscudocode Keywords: The seven classes of keywords that are used in pseudocode.

Another design tool

Pseudocode, along with the Structure Chart, is one of our most powerful design tools. While the Structure
Charts is concerned with what function we have in our program and how the functions interact with each
other, Pseudocode is concerned with what goes on inside individual functions.

There are several reasons why we need to draft a solution before we start writing code. First, we need to be
able to think big before getting bogged down in the details. Programming languages resist this process; they
need you to always work at the most detailed level. This can be very frustrating; you are trying to solve a large
problem but the language keeps forcing you to specify data types and work through syntax errors.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.2 Designing Algorithms | Page 145

https://video.byui.edu/media/2.2+-+PseudocodeA+Design+First/0_77c0a1k5/18442462
https://video.byui.edu/media/2.2+-+PseudocodeA+When+to+Design/0_9ntwsnr3/18442462
https://video.byui.edu/media/2.2+-+PseudocodeA+Different+Design+Approaches/0_8bnt32v4/18442462
https://video.byui.edu/media/2.2+-+PseudocodeA+Using+Pseudocode/0_rg0s27od/18442462
https://video.byui.edu/media/2.2+-+PseudocodeA+Rules+of+Pseudocode/0_ockk9pbv/18442462
https://video.byui.edu/media/2.2+-+PseudocodeA+Pseudocode+Keywords/0_m5ewkvxe/18442462
https://video.byui.edu/media/2.2+-+PseudocodeA+Pseudocode+Keywords/0_m5ewkvxe/18442462

Using pseudocode

Pseudocode is a tool helping the programmer bridge the high-level English description of a problem and the
C++ solution. To illustrate how this works, we will begin with a natural language definition of a problem.
In this case, how to compute your tax liability with a simple 2 tier tax table.

Given a user's income, compute their tax burden by looking up the appropriate formula
on the following table:

If taxable income But not The tax is:
is over-- over--

$0 $15,100 10% of the amount over $0

$15,100 $61,300 $1,510.00 plus 15% of the amount over 15,100
$61,300 $123,700 $8,440.00 plus 25% of the amount over 61,300
$123,700 $188,450 $24,040.00 plus 28% of the amount over 123,700
$188.450 $336,550 $42,170.00 plus 33% of the amount over 188,450
$336.,550 no limit $91,043.00 plus 35% of the amount over 336,550

First, we will introduce structure in the problem definition by dividing the process into discrete steps. We are
entering the realm of pseudocode here, but there is still far too much natural language to be much of a help.

Determine tax bracket the user's income according to the ranges in this table:

Min

$0 $15.100 10%
$15,100 $61,300 15%
$61,300 $123,700 25%
$123,700 $188,450 28%
$188,450 $336,550 33%
$336,550 no limit 35%

Apply the appropriate formula:

10% 10% of the amount over $0

15% $1,510.00 plus 15% of the amount over $15,100
25% $8,440.00 plus 25% of the amount over $61,300
28% $24,040.00 plus 28% of the amount over $123,700
33% $42,170.00 plus 33% of the amount over $188,450
35% $91,043.00 plus 35% of the amount over $336,550

Return the results back to the caller.

Page 146 | 2.2 Designing Algorithms | Unit 2: Design & Loops | Procedural Programming in C++

Next we will be more precise with our equations and fill in more detail whenever possible. We are beginning
to specify how things will be accomplished, not just what will be accomplished. Observe how our pseudocode
is moving closer to our programming language with every step.

IF income is less than $15,100 then

tax is 10% of the amount over $0
IF income between $15,100 and $61,300 then

tax is $1,510 plus 15% of the amount over $15,100
IF income between $61,300 and $123,700 then

tax is $8,440 plus 25% of the amount over $61,300
IF income between $123,700 and $188,450 then

tax is $24,040 plus 28% of the amount over $188,450
IF income is above $188,450 then

tax is $91,043 plus 35% of the amount over $336,550

Finally, we reduce all operations to pseudocode keywords. Now we are ready to start writing code. The
problem has been solved and now it is just a matter of translating the syntax-free pseudocode into the specific

syntax of the high level language.

computeTax(income)

IF ($0 < income < $15,100)

tax € income * 0.10
IF ($15,100 < income < $61,300)

tax € $1,510 + 0.15 * (income - $15,100)
IF ($61,300 < income < $123,700)

tax € $8,440 + 0.25 * (income - $61,300)
IF ($123,700 < income < $188,450)

tax € $24,040 + 0.28 * (income - $123,700)
IF ($188,450 < income < $336,550)

tax € $42,170 + 0.33 * (income - $188,450)
IF ($336,550 < income)

tax € $91,043 + 0.35 * (income - $336,550)

RETURN tax
END

Always remember that pseudocode is just a design tool. With the exception of a few assignments in this class,
your purpose is to develop great software rather than write pseudocode. Therefore, you should use
pseudocode only as far as it helps you to develop software. This means that sometimes you will design right
down to the pseudocode keywords while other times you will be able to stop designing before that point
because the solution presents itself.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.2 Designing Algorithms | Page 147

Pseudocode keywords

There are seven classes of keywords: receive, send, math, remember, compare, repeat, and call functions.

Receive

A computer can receive information from a variety of input sources, such as keyboard, mouse, a network, a
sensor, or wherever.

READ Receive information from a file READ studentGrade
GET Receive input from a user, typically from the GET income
keyboard

Send

A computer can send information to the console, display it graphically, write to a file, or operate on a device.

Keyword

PRINT When sending data to a permanent output device = PRINT full student name
like a printer
WRITE When writing data to a file WRITE record
PUT When sending data to the screen PUT instructions
PROMPT Just like PUT except always preceding a GET PROMPT for user name
instruction
Arithmetic

Most processors have the built-in capability to perform the following operations:

0 Parentheses are used to override the default c=(f-32)*5/9
order of operations

* X Any mathematical convention can be used numWeeks = days div 7

/ = mod div

+- Addition / subtraction SET count = count + 1

|| N Common mathematical values or operations PUT V10

<# Common comparison operations IF grade = 60
Remember

A computer can assign a value to a variable or a memory location

SET Assign a value to a variable € SET answer € 42

é

Page 148 | 2.2 Designing Algorithms | Unit 2: Design & Loops | Procedural Programming in C++

Compare

A computer can compare two values and select one of two alternate actions

IF For two possible outcomes IF income / 10 < tithingPaid
ELSE PUT full tithe message
ELSE

PUT scripture from Malachi
SWITCH CASE For multiple possible outcomes. SWITCH option

This will be discussed in more CASE 1 _
detail in Chapter 3.5 PUT great choice!
CASE 2
PUT could be better
CASE 3

PUT please reconsider

Repeat

A computer can repeat a group of actions.

Keyword

WHILE When repeating through the same WHILE studentGrade < 60
code more than once takeClass()
FOR When counting FOR count = 1 to 10 by 2s
PUT count
Functions

A computer can call a function and pass parameters between functions.

Declaring Functions are named. computeTithing(income)
Input parameters are enumerated. SET tithing = income / 10
Statements are indented. RETURN tithing
RETURN values. END
END.

Calling Call by name PUT computeTithing(income)

Specity parameters

-
“‘L On the surface, it may seem like pseudocode is no different than C++. Why learn another
language when C+ + already does the job? The short answer is that pseudocode is less detailed

than C+ + so you can concentrate on more high-level design decisions without getting bogged
down in the minutia of detail that C+ + demands. The long answer is a bit more complicated.

In its truest form, pseudocode is syntax free. This means that anything goes! It starts very free-
form much like natural language (English). As you refine your thinking and work out the
program details, it begins to take on the structure of a high-level programming language. When
you get down to the pseudocode keywords listed above, you have worked out all the design
decisions. While it is not always necessary to develop pseudocode to this level of detail, it is an
important skill to develop. This is why pseudocode is an important CS 124 skill to learn.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.2 Designing Algorithms | Page 149

Example 2.2 - Compute Pay

This example will demonstrate the relationship between pseudocode and C+ +. Specifically, it will show
what kinds of details are necessary in pseudocode (variable names, equations, and program logic) and
which are not (variable declarations, C++ syntax, and comments).

oun(

Write the pseudocode corresponding to the following C++ function:

AR A AR A KA A KA KK A KA KA AR A A KA K KA KK KK KK K
* COMPUTE PAY

* Based on the user’s wage and hours worked, compute the pay

* taking into account time-and-a-half overtime
**/

float computePay(float hourlyWage, float hoursWorked)

{
float pay;

// regular rate
if (hoursWorked < 490)
pay = hoursWorked * hourlyWage; // regular rate

w[qoIJ

// overtime rate
else
pay = (40.@ * hourlyWage) + // first 40 normal
((hoursWorked - 40.0) * (hourlyWage * 1.5)); // balance overtime

return pay;

The pseudocode for computepay() is the following:

computePay(hourlyWage, hoursWorked)
IF hoursWorked < 40
SET pay = hoursWorked x hourlyWage
ELSE
SET pay = (40 x hourlyWage) + ((hoursWorked - 40) x (hourlyWage x 1.5)
RETURN pay
END

uonnjog

Observe how the pseudocode completely represents the logic of the program without worrying about
data-types, declaring variables, or the syntax of the language.

As a challenge, look at the Project 1 definition. The pseudocode for most of the functions is provided.
Compare your C+ + code with the provided pseudocode. See if you can write the pseudocode for the
remaining functions (computeTithing(), getActualTax(), etc.).

8uarreyDn

Page 150 | 2.2 Designing Algorithms | Unit 2: Design & Loops | Procedural Programming in C++

Problem 1

What is the value of b at the end of execution?

bool vegas(bool b)

{
b = false;
return true;

}

int main()

{
bool b;
vegas(b);
return 0;

¥

Answer:

Please see page 65 for a hint.

Problem 2

What is the output when the user types ‘a’?

void function(char &value)

¢ cin >> value;
return;

}

int main()

{
char input = 'b’;
function(input);
cout << input << endl;
return 0;

}

Answer:

Please see page 65 for a hint.

Problem 3

Which of the following is not a basic computer operation?

e Receive information
e Connect to the network
e Perform math

e Compare two numbers

Please see page 145 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops

2.2 Designing Algorithms | Page 151

Problem 4

What is wrong with the following pseudocode?

IF age <18
PUT message about not being old enough to vote

Answer:

Please see page 49 for a hint.

Problem 5

Which of the following is the correct pseudocode for sending a message to the user?

| DISPLAY

| cout << “The following are the instructions\n”;

| WRITE instructions on the screen

| PUT instructions on the screen

Please see page 148 for a hint.

Problem 6

Which of the following is the correct pseudocode for computing time-and-a-half overtime?

| pay = (hours - 40) * pay * 1.5 + 40 * pay

| pay = ((float)hours - 40.0) * pay * 1.5 + 40 * (float)pay;

| pay = hours - 40 * pay * 1.5 + 40 * pay

| pay = hours over 40 times time-and-a-half plus regular pay for first 40 hours

Please see page 148 for a hint.

Problem 7

Which is the pseudocode command to differentiate between two options?

| IF

| COMPARE

| same?

Please see page 149 for a hint.

Page 152 | 2.2 Designing Algorithms | Unit 2: Design & Loops | Procedural Programming in C++

Problem 8

Which pseudocode command displays data on the screen?

| PUT |

| PROMPT |

| OUTPUT |

| SCREEN |

Problem 9

Write the pseudocode corresponding to the following C+ +:

Please see page 148 for a hint.

float computeTithing(float income)
{

float tithing;

// Tithing is 10% of our income. Please
// see D&C 119:4 for details or questions
tithing = income * 0.10;

return tithing;

Answer:

Please see page 49 for a hint.

Problem 10

Write the pseudocode for a function to determine if a given year is a leap year:

According to the Gregorian calendar, which is the civil calendar in use today, years evenly divisible by 4 are
leap years, with the exception of centurial years that are not evenly divisible by 400. Therefore, the years
1700, 1800, 1900 and 2100 are not leap years, but 1600, 2000, and 2400 are leap years.

Answer:

Please see page 150 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.2 Designing Algorithms | Page 153

Problem 11

365 or 366.:
Answer:

Write the pseudocode for a function to compute how many days are in a given year. Hint: the answer is

Please see page 150 for a hint.

Problem 12

Write the pseudocode for a function to display the multiples of 7 under 100.
Answer:

Please see page 148 for a hint.

Page 154 | 2.2 Designing Algorithms | Unit 2: Design & Loops | Procedural Programming in C++

Please create pseudocode for the following functions. The pseudocode is to be turned in by hand in class
tor face-to-face students and submit it as a PDF for online students:

Part 1: Temperature Conversion

int main()

{
// Get the temperature from the user
float tempF = getTemp();

// Do the conversion
float tempC = (5.0 / 9.0) * (tempF - 32.0);

// display the output
// I don't want showpoint because I don't want to show a point!
cout.setf(ios::fixed);
cout.precision(9);
cout << "Celsius:

<< tempC << endl;

return 0;

Part 2: Child tax credit

int main()
{
// prompt for stats
double income = getIncome();
int numChildren = getNumChildren();

// display message
cout.setf(ios::fixed);
cout.precision(2);
cout << "Child Tax Credit: $ ";
if (qualify(income))
cout << 1000.0 * (float)numChildren << endl;
else
cout << 0.0 << endl;

return 0;

Part 3: Cookie monster

void askForCookies()

{
// start with no cookies :-(
int numCookies = 9;
// loop until the little monster is satisfied
while (numCookies < 4)
{
cout << "Daddy, how many cookies can I have? ";
cin >> numCookies;
}
// a gracious monster to be sure
cout << "Thank you daddy!\n";
return;
}

Please see page 150 for a bint.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.2 Designing Algorithms | Page 155

2.3 Loop Syntax

Sue’s little brother is learning his multiplication facts and has asked her to write them on a sheet of paper.
Rather than spend a few minutes to hand-write the table, she decides to write a program instead. This program
will need to count from 1 to 10, so a FOR loop is the obvious choice.

Objectives
By the end of this class, you will be able to:

e Demonstrate the correct syntax for a WHILE, DO-WHILE, and FOR loop.
e Create a loop to solve a simple problem.

Prerequisites
Before reading this section, please make sure you are able to:

e Convert a logic problem into a Boolean expression (Chapter 1.5).
* Generate the pseudocode corresponding to a C++ function (Chapter 2.2).

Overview

This is the first of a three part series on how to use loops to solve programming problems. The first part will
tocus on the mechanism of loops, namely the syntax.

Loops are mechanisms to allow a program to execute the same section of code more than once. This is an
important tool for cases when an operation needs to happen repeatedly, when counting is required to solve a
problem, and when the program needs to wait for an event to occur.

There are three types of loops in C++: WHILE, DO-WHILE, and FOR:

for

A WHILE loop is good for Same as WHILE except we Designed for counting, usually
repeating through a given block always execute the body of the meaning we know where we start,

of code multiple times. loop at least once. where we end and what changes.
{ { {
while (x > 9) do for (x = 10;
{ { X > 0;
X--3 X--3 X--)
cout << x << endl; cout << X << endl; {
} } cout << X << endl;
while (x > 0); }
} } }

Page 156 | 2.3 LoopSyntax | Unit2: Design & Loops | Procedural Programming in C++

WHILE

The simplest loop is the WHILE statement. The WHILE loop will continue executing the body of the loop
until the controlling Boolean expression evaluates to false. The syntax is:

while (<Boolean expression>)
<body statement>;

As with the IF statement, we can always have more than one statement in the body of the loop by adding
curly braces {}s:

while (<Boolean expression>)

{
<body statementl>;

<body statement2>;

}

Observe how the body of the loop is indented three spaces exactly as the body of an IF statement is indented.

&

ﬁgt/, The WHILE loop keeps iterating as long as the Boolean expression evaluates to true. This may
seem counter-intuitive at first. Some find it easier to think that the loop keeps iterating until the
Boolean expression evaluates to true.

One way to keep this straight in your mind is to read the code as “while <condition> continue
to <body>.” For example consider the following code:

while (input < 9)
cin >> input;

This would read “While input less-than zero, continue to prompt for new input.”

It is possible to count with a WHILE loop. In this case, you initialize your counter before the loop begins,
specify the continuation-condition (what must remain true as we continue through the loop) in the Boolean
expression, and specify the increment logic in the body:

{
int count = 1;
while (count <= 10) // continue as long as this evaluates to true
{ // use {}s because there is more than one
cout << count << endl; // statement in the body of the loop
count++;
}
}

This code will display the numbers 1 through 10 on the screen, each number on its own line.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.3 Loop Syntax | Page 157

Example 2.3 - While Loop

@M This example will demonstrate the syntax of a simple WHILE loop.
o
o
Write a program to prompt the user for his letter grade. If the grade is not in the valid range (A, B, C,
D, or F), then the program will display an error message and prompt again.
Please enter your letter grade: B
:? Your grade is B
©
% ..Or...
B Please enter your letter grade: E
Invalid grade. Please enter a letter grade {A,B,C,D,F} G
Invalid grade. Please enter a letter grade {A,B,C,D,F} C

Your grade is C

The most challenging part of this problem is the Boolean expression capturing whether the user input
is in the valid range. Anything that is not an A, B, C, D, or F is classified as invalid.

char getGrade()

{
char grade; // the value we will be returning
// initial prompt
cout << "Please enter your letter grade: ";
g? cin >> grade;
e
o, // validate the value
g while (grade != 'A' && grade != 'B' && grade != 'C' &&
grade != 'D' && grade != 'F")
{
cout << "Invalid grade. Please enter a letter grade {A,B,C,D,F} ";
cin >> grade;
}
// return when done
return grade;
}

As a challenge, modify getGrade() so either uppercase or lowercase letter grades are accepted. This can
be done by either doubling the size of the Boolean expression to include lowercase letters or by
converting the grade to uppercase if it is lowercase.

The complete solution is available at 2-3-while.cpp or:
/home/cs124/examples/2-3-while.cpp

osTy 995 foSuarreyn

Page 158 | 2.3 LoopSyntax | Unit2: Design & Loops | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-3-while.html
https://video.byui.edu/media/2.3+Loop+Syntax+-+WHILE/0_fzzx7oz7/18442462

DO-WHILE

The DO-WHILE loop is the same as the WHILE loop except the controlling Boolean expression is checked
after the body of the loop is executed. This is called a trailing-condition loop, while the WHILE loop is a
leading-condition loop. As with the WHILE statement, the loop will continue until the controlling
Boolean expression evaluates to false. The syntax is:

do
<body statement>;
while (<Boolean expression>);

DO-WHILE loops are used far less frequently than the aforementioned WHILE loops. Those scenarios when
the DO-WHILE loop would be the tool of choice center around the need to ensure the body of the loop gets
executed at least once. In other words, it is quite possible the controlling Boolean expression in a WHILE
loop will evaluate to false the first time through, removing the possibility the body of the loop is executed.
This 1s guaranteed to not happen with the DO-WHILE loop because the body always gets executed first.

Example
Consider the following code prompting the user for his age:
{
int age;
do // the “do” keyword on its own line
{ // use {}s when there is more than one
cout << "What is your age? "; // statement in the body of the loop
cin >> age;
// keep the {}s on their own line
while (age < 0); // continue until this evaluates to false
}

In this example, we want to prompt the user for his age at least once. The code will continue prompting the
user for his age as long as the user enters negative numbers. Note how the while part of the DO-WHILE
loop is on a separate line from the {}s. This is because the style guide specifies that {}s must be on their own
lines.

It turns out that the WHILE loop and the DO-WHILE loop solve exactly the same set of
problems. Any DO-WHILE loop can be converted to a WHILE loop by bringing one instance of the
body outside the loop. In the above example, the equivalent WHILE loop would be:

{
int age;
cout << "What is your age? "; // one copy of the body outside the loop
cin >> age;
while (age < 9) // same condition as the DO-WHILE
{
cout << "What is your age? "; // second copy in the body of the loop
cin >> age;
}
}

Note how redundant it is to have the second copy of the body outside the loop. This is the primary
advantage of the DO-WHILE: to reduce the redundancy.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.3 Loop Syntax | Page 159

Example 2.3 - Do-while Loop

@l This example will demonstrate how to use a DO-WHILE loop to validate user input.
o
o
Write a program to sum the numbers the user entered. The program will continue to prompt the user
until the value zero (0) is typed.
:? Please enter a collection of integer values. When
o you are done, enter zero (90).
o
& > 18
: ;1
> -7
>0
The sum is: 18

Because the user needs to be prompted at least once, a DO-WHILE loop is the right tool for the job.

int promptForNumbers()
{
// display instructions
cout << "Please enter a collection of integer values. When\n"
<< "\tyou are done, enter zero (0).\n";
int sum = 9;
int value;

// perform the loop
do
{

// prompt for value
cout << "> ";
cin >> value;

»»
=2
g
i
e
=)

// add value to sum
sum += value;

while (value != 0);
// continue until the user enters zero

// return and report
return sum;

As a challenge, can you modify the above function so the value zero is not added to the sum?

To take this one step further, modity the above problem so -1, not 0, is the terminating condition. This
will require you to modify the instructions as well.

The complete solution is available at 2-3-doWhile.cpp or: i

/home/cs124/examples/2-3-doWhile.cpp

osTy 395 foSuarreyn

Page 160 | 2.3 LoopSyntax | Unit2: Design & Loops | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-3-doWhile.html
https://video.byui.edu/media/2.3+-+DO+WHILE/0_i7u5g04h/18442462

FOR

The final loop is designed for counting. The syntax is:

for (<initialization statement>; <Boolean expression>; <increment statement>)
<body statement>;

Here the syntax is quite a bit more complex than its WHILE and DO-WHILE brethren.

for (lint count = @ |; [count < 5 |; [count++
/carﬁt << count << endl;

Initialization:

Boolean expression:

Increment:

The first statement to be executed
in a loop.

e Can be any statement.
e We can declare and initialize a
variable inside the loop:

for (int i = @; ..

e We can initialize more than
one variable that is already

Is executed immediately before
the body of the loop.

¢ Can be any expression.

e As long as the expression
evaluates to true, the loop
continues:

e Ifitis left empty, the

expression evaluates to true.

This means it will loop

Is executed immediately after the
body of the loop.

¢ Can be any statement.

e Usually we put a ++ or -- here:

¢ You can put more than one
statement here:

for (.. ; .; i++, j--)

o Can be left empty:

defined elsewhere in the code: forever:

for (i i for (5 1 < 10;)
for (j =0, k=0; . or (1 = 0; > 1++)

o We can also leave it empty:

for (; 1 < 10; i++)

While the syntax of the FOR loop may look quite complex, it has the three things any counting problem
needs: where to start (initialization), where to end (Boolean expression), and how much to count by (the
increment statement). For example, a FOR loop to give a countdown from 10 to zero would be:

{
// a countdown, just like what Cape Kennedy uses
for (int countDown = 10; countDown >= ©; countDown--)
cout << countDown << endl;
}

- &

B/

While it may seem difficult to remember what the three fields of a FOR loop (Initialization,
Boolean expression, and increment) are for, there is a memory clue to help you remember.
Consider the loop to count to four:

for (int count = 1; count < 5; count++)
cout << count << endl;

This reads “For count equals one, as long as count is less than five, add one to count.”

Procedural Programming in C++ | Unit 2: Design & Loops | 2.3 Loop Syntax | Page 161

Example 2.3 - For Loop

@l This example will demonstrate how to use a FOR loop. It will allow the user to specify each of the three
g components of the loop (Initialization, Boolean expression, and Increment). In many ways, this is a
SA driver program for the FOR loop.
Write a program prompt the user the parameters for counting. The program will then display the
numbers in the specified range.
:? What value do you want to start at? 4
o What value do you want to end at? 14
%? What will you count by (example: 2s): 3
4
3 7
10
13

The following program will count from start to end.

int main()

{
// start
cout << "What value do you want to start at? ";
int start;

cin >> start;

// end

cout << "How high do you want to count? ";
int end;

cin >> end;

// increment

cout << "What will you count by (ex: 2s): ";
int increment;

cin >> increment;

»»
=2
g
i
e
=)

// count it
for (int count = start; count <= end; count += increment)
cout << "\t" << count << endl;

return 0;

}

Notice the three parts of a FOR loop: the starting condition (int count = start), the continuation
condition (count <= end), and what changes every iteration (count += increment). As long as the
continuation condition is met, the loop will continue and the body of the loop will execute.

9 As a challenge, modify the above program to ensure that start < end if increment is positive, and start
% > end if increment is negative.

o

=]

0]

o

@ The complete solution is available at 2-3-for.cpp or:

E; /home/cs124/examples/2-3-for.cpp

[72]

O

Page 162 | 2.3 LoopSyntax | Unit2: Design & Loops | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-3-for.html
https://video.byui.edu/media/2.3+-+FOR/0_vpa5fyjl/18442462

Problem 1

What is the output?
void function(int a, int &b)
{
a = 0;
b = 0;
}
int main()
{
int a = 1;
int b = 2;
function(a, b);
cout << "a == " << a << "\t'
<< "b == " << b << endl;
}
Answer:

Please see page 65 for a hint.

Problem 2

What is the output?

int value = 1;

int main()

{
int value = 2;
cout << value;

if (true)

{
int value = 3;
cout << value;

{
int value = 4;
cout << value;

}

cout << value;

}

cout << value << endl;
return 0;

Answer:

Please see page 67 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.3 Loop Syntax | Page 163

Problem 3

What is the output?

{
int j = 10;

for (int i = 1;
i< 3;
i++)
J++;
cout << i << endl;

return 0;

Answer:

Problem 4-7

Write the code to implement each of the following loops:

Please see page 161 for a hint.

Count from 1 to 10

Keep asking the user for
input until he enters a
value other than ‘q’

Display the powers of
two below 2,000

Sum the multiples of
seven below 100

Page 164 | 2.3 LoopSyntax | Unit2: Design & Loops

Please see page 161 for a hint.

Procedural Programming in C++

Problem 8

Which of the following has no syntax errors?

do while (true)
cout << "Infinite loop!\n";

do
cout << "Infinite loop!\n";
while (true);

do (true)
cout << "Infinite loop!\n";

while (true)
cout << "Infinite loop!\n";
do;

Problem 9-10

Write a program that keeps prompting the user for a number until he inputs the number 0:

Use a WHILE loop

Please see page 159 for a hint.

Use a DO-WHILE loop

Please see page 159 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.3 Loop Syntax | Page 165

Problem 11

Write the code to count down from 100 to 10 in steps of 10:

100
90
80
70
60
50
40
30
20
10

Answer:

Please see page 162 for a hint.

Problem 12-13

Write the code to prompt the user for 5 numbers and display the sum

Please enter 5 numbers:
#1: 54

#2: 99

#3: 12

#4: 65

#5: 34

Sum: 264

Answer in pseudocode:

Answer in C++:

Please see page 161 for a hint.

Page 166 | 2.3 LoopSyntax | Unit2: Design & Loops | Procedural Programming in C++

Sue’s silly brother Steve has a teacher who loves to give tons of math homework. This week, the assignment
is to add all the multiples of 7 that are less than 100. Last week, he had to add all the multiples of 3 that
are less than 100. Sue wants to make sure that her brother gets a 100% on each assignment so she decided
to write a program to validate each assignment.

Example

User input in underline.

What multiples are we adding? 5
The sum of multiples of 5 less than 100 are: 950

Another example:

What multiples are we adding? 7
The sum of multiples of 7 less than 100 are: 735

Assignment

Make sure you run test bed with:

testBed csl124/assign23 assignment23.cpp

Don’t forget to submit your assignment with the name “Assignment 23” in the header.

Please see page 162 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.3 Loop Syntax | Page 167

esign & Loops

2.4 Loop Output

Sue can’t seem to find the bug in her assignment. The code looks right and it compiles, but the loop keeps
giving her different output than she expects. How can she ever hope to find the bug if everything executes so
quickly? If only there was a way to step through the code one line at a time to see what each statement is
doing...

Objectives
By the end of this class, you will be able to:
e Predict the output of a given block of code using the desk check technique.

® Recognize common pitfalls associated with loops.

Prerequisites

Before reading this section, please make sure you are able to:

e Demonstrate the correct syntax for a WHILE, DO-WHILE, and FOR loop (Chapter 2.3).
e Create a loop to solve a simple problem (Chapter 2.3).
e Use #ifdef to create debug code in order to test a function (Chapter 2.1).

Desk Check

Please watch the following videos:

e Predicting Output: The purpose of this video is to illustrate the importance of being able to predict
the output of code by inspection.
e Levels of Understanding: The purpose of this video is to illustrate different levels of understanding
of an algorithm and the benefits of working at each level. There are three levels:
1. Concrete: A low level understanding of the specific details of what the code is doing. It
consists of a description of what happens at every step of the program execution.
2. Abstract: Describes what parts of a program do, and how they relate to the larger whole.

3. Conceptual: A high level comprehension that enables the programmer to explain in simple
English what a program does.

to predict the output of a program.
Desk Check Steps: The process of desk checking a program, from start to finish. It will describe
how deck checking is a form of dataflow measurement, how the complete state of the program is
captured at each level, and how every aspect of the algorithm is captured in the end. This chapter
will describe the steps of performing a desk check, including line numbering, variable enumeration,
and finally building the desk check table.

e Desk Check Table: The purpose of this video is to illustrate how to build and interpret a desk check
table on a single-function problem.

e Desk Check with Functions: The purpose of this video is to illustrate how desk checking works
across multiple functions.

e Online Desk Check: The purpose of this video is to illustrate how to desk check existing code.

oo Dataflow: The purpose of this video is to illustrate that tracking dataflow is the most effective way
% []

Page 168 | 2.4 LoopOutput | Unit2: Design & Loops | Procedural Programming in C++

https://video.byui.edu/media/2.4+-+Desk+CheckA+Predicting+Output/0_dgihq3tv/18442462
https://video.byui.edu/media/2.4+-+Desk+CheckA+Levels+of+Understanding/0_tzvj9q7o/18442462
https://video.byui.edu/media/2.4+-+Desk+CheckA+Dataflow/0_e5mciags/18442462
https://video.byui.edu/media/2.4+-+Desk+CheckA+Steps/0_beqvs1si/18442462
https://video.byui.edu/media/2.4+-+Desk+CheckA+Table/0_ygzfq34g/18442462
https://video.byui.edu/media/2.4+-+Desk+CheckA+Functions/0_6zzf8ln5/18442462
https://video.byui.edu/media/2.4+-+Desk+CheckA+Online/0_ggl3h0od/18442462
https://video.byui.edu/media/2.4+-+Desk+CheckA+Table/0_ygzfq34g/18442462

w[qoIJ

uonnjos

Example 2.4 - Expression Desk Check

Desk check the following code:

{
// get paid!
double income = 125.37;

// remove tithing, you keep 90%
income *= 0.9;

// don’t forget half goes to savings
income /= 2.0;

// a man has got to eat
income -= 15.50;

// display the results
cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(2);

cout << "$" << income << endl; }

The first step is to number the lines of code. These line numbers will then correspond to the rows in

the Desk Check table. For convenience, the lines numbers are displayed in the line comments. N
{ B
double income = 125.37; // (1) extra code removed for brevity =)
income *= 0.9; /7 (2)
income /= 2.0; // (3)
income -= 15.50; // (4)
cout << income << endl; // (5)
}

Next, a table will be created to reflect the state of the variables at various stages of execution.

output

1 125.37
2 112.833
3 56.4165
4 40.9165
5 40.9165 $40.92

Notice how we are able to track each step of execution of the code with the Desk Check table. Even
though income changed many times in a few lines of code, we can always see the value at a given moment
in time.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.4 Loop Output | Page 169

Example 2.4 - Conditional Desk Check

Desk check the following code:

int computeTax(double income)

{
// 10%, 15%, 25%, 28%, and 33% brackets here.
if (income < 0.00)
return 0;
else if (income <= 15100.00)
=~ return 10;
8 else if (income <= 61300.00)
=N return 15;
g else if (income <= 123700.00)
return 25;
else if (income <= 188450.00)
return 28;
else if (income <= 336550.00)
return 33;
return 35;
}
The first step is to number the lines of code. These line numbers will then correspond to the rows in
the Desk Check table. For convenience, the lines numbers are displayed in the line comments.
int computeTax(double income)
{
if (income < 0.00) // (1)
return 0; // (2)
else if (income <= 15100.00) // (3)
return 10; // (4)
else if (income <= 61300.00) // (5)
return 15; // (6)
else if (income <= 123700.00) // (7)
return 25; // (8)
else if (income <= 188450.00) // (9)
return 28; // (10)
else if (income <= 336550.00) // (11)
return 33;
g
= return 35; // (12)
= }
o
=]

Next, a table will be created to reflect the state of the variables at various stages of execution. We will
start with income set to $50,000.00

Line | income | return

1 50000.0
3 50000.0
5 50000.0
6 50000.0 15

Note how line (2) is not executed because the Boolean expression in line (1) evaluated to false. This
means that we move to line (3). Since it too evaluated to false, we move on to line (5). Now since
(50000.0 <= 61300.00) evaluates to true, we move on to line (6). Line (6) is a return statement, meaning
it is the last line of the function we execute.

It is important to realize that line (2), (4), (7), (8), (9), (10), (11), and (12) are never executed.

Page 170 | 2.4 LoopOutput | Unit2: Design & Loops | Procedural Programming in C++

w[qoIJ

uonnjos

J8uareyn

Desk check the following code:

{

int i;
int j = 0;

for (i =1; i< 10; i *= 2)
Jjo+=1i;

cout << j << endl;

Example 2.4 - Loop Desk Check

The first step is to number the lines of code. These line numbers will then correspond to the rows in

the Desk Check table. For convenience, the lines numbers are displayed in the line comments.

{

}

int i;
int j = 0;

for (i =1; i < 10; i *= 2)
jo+=1;

cout << j << endl;

// (1) along with the preceding line

// (2)
/] (3)

// (4)

Next, a table will be created to reflect the state of the variables at various stages of execution.

Line i _|j |

1 ?)
P 1)
3 1 1
P 2 1
3 2 3
2 4 3
3 4 7
2 8 7
3 8 15
2 16 15
4 16 15

Observe how the desk-check is a record of the execution of the loop. You can always “look back in time”
to see exactly what was happening at a given stage in execution. For example, the third execution of the
loop (highlighted) occurred with i set to 4 and j set to 3. Since i < 10 evaluated to true (because 4 is
less than 10), the loop continued on to the body (step 3). From here, i remained unchanged, but j
increased its value by 4. You can always read the current values of all the variables off the desk check
table. As expected, the value of j jumped from 3 to 7 on this line of code

Notice how the FOR loop has three components: the Initialization, the Boolean expression, and the
Increment. As a challenge, create a desk check where step 2 is split into these three components:

2a: Initialization

2b: Boolean expression

2.c: Increment

Procedural Programming in C++

| Unit 2: Design & Loops | 2.4 Loop Output | Page 171

Example 2.4 - Online Desk Check

Modify the following code to perform an online desk check.

{
int i;
E int j = 0;
o
< : . .
o for (i =1; i< 10; i *= 2)
3 j o+= i
cout << j << endl;
}

columns. When this is finished, COUT statements are inserted where the line numbers would be on the
paper desk check. The resulting code is:

{
int i = 99; // some value
int j = 0;
cout << "\ti\tj\n"; // row header of Desk Check table
cout << "I\t" << i << "\t" << j << endl; // (1)
for (i =1; 1 < 10; i *= 2)
{
cout << "2\t" << i << "\t" << j << endl; // (2)
J+= 15
7 cout << "3\t" << i << "\t" << j << endl; // (3)
o }
e
8. cout << "A\t" << 1 << "\t" << j << endl; // (4)
5 }

The output of this modified code should appear “very similar” to the desk check performed by hand:

()

BWNWNWNWNR
R 00O ABRMNNRRUOR
PRNNWWRRO W

5
5

o))

Observe how this table is the same as the paper desk check output.

As a challenge, perform a paper and online desk check on the computeTax() function from Project 1.
What kind of bugs would it help you find?

The complete solution is available at 2-4-deskCheck.cpp or:

/home/cs124/examples/2-4-deskCheck.cpp

osTy 395 faSudrreyD

The first step is to insert a COUT statement labeling the variables that will be displayed in the various

Page 172 | 2.4 LoopOutput | Unit2: Design & Loops | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-4-deskCheck.html

Pitfalls

As with the pitfalls associated with IF statements, a few pitfalls are common among loops.

Pitfall: = instead of ==

Remember that '=" means assign, and '==" means compare. We almost always want '==" in loops:

{

bool done = false;

do

{

if (x == @)
done = true;

while (done = false); // PITFALL! We probably want to compare done with false!

}

Pitfall: < instead of <=

Pay special attention to the problem you are trying to solve. Some loops require us to add “the numbers less
than 100.” This implies count < 10e. Other loops require us to count “from 1 to 10.” This implies count <=
10. This class of errors is called “oft-by-one” errors:

{
// count from 1 to 10
for (int count = 1;
count < 10; // PITFALL! The comment says 1 to 10 implying count <= 10
count++)
5
}

Pitfall: Extra semicolon

The entire loop statement includes both the loop itself and the body. This means we do not put a semicolon
on the FOR loop itself. If we do so, we are implying that there is no body of the loop (just like an IF
statement):

{
// count from 1 to 10
for (int 1 = 1; i <= 10; i++); // PITFALL! This signifies that there is no body
cout << i << endl; // so this statement isn’t part of the loop
1

Pitfall: Infinite loop

Please make sure that your loop will end eventually:

{
// count from 1 to 10
for (int 1 = 1; i > @; i++) // PITFALL! I will always be greater than 0!
cout << i << endl;
}

Procedural Programming in C++ | Unit 2: Design & Loops | 2.4 Loop Output | Page 173

Problem 1

Which of the following is the definition of the conceptual level of understanding of an algorithm?

e What the program does, not how the solution is achieved
e What the components do and how they influence the program
e The value of every variable at every stage of execution

e Realization where the flaws or bugs are

Please see page 168 for a hint.

Problem 2

Where do you put the line numbers in a desk check table?

Answer:

Please see page 171 for a hint.

Problem 3

Given a program that converts feet to meters, create a desk check table for the input value of 2 feet.

convert
PROMPT for feet
GET feet
SET meters = feet * 0.301
PUT meters
END

Please see page 171 for a hint.

Problem 4

Desk check the following program.

addNumbers
SET number =1
DOWHILE number < 5
SET number = number + number
ENDDO
END

Please see page 171 for a hint.

Page 174 | 2.4 LoopOutput | Unit2: Design & Loops | Procedural Programming in C++

Problem 5

What is the output?
{

int i;
for (i =0; i< 4; i++)

3
" "

cout << "i == << 1i;

Answer:

Please see page 161 for a hint.

Problem 6

What is the output?
{

bool done = false;
int n = 5;

while (!done)

{
if (n = 2)
done = true;
n--;
}
cout << "n == " << n << endl;
¥
Answer:

Please see page 157 for a hint.

Problem 7

What is the output for the input of @’ and X’

{
char input;
do
{
cout << "input: ";
cin >> input;
cout << "\t"
<< input
<< endl;
}
while (input != 'x');
}
Answer:

Please see page 157 for a hint.

Procedural Programming in C++

| Unit 2: Design & Loops

2.4 Loop Output

Page 175

Problem 8

What is the output?
{

int i;
for (i =0; i < 4; i++);

cout << "H";
cout << endl;

Answer:

Please see page 173 for a hint.

Problem 9

What is the output?
{

int i;
for (i =0; 1i<=4; i++)
5

cout << "i == << 1 << endl;

Answer:

Please see page 157 for a hint.

Problem 10

What is the output?
{

int sum = 9;
int count;

for (count = 0;
count < 4;
count++)

sum += count;

cout << "sum == " << sum;

Answer:

Please see page 161 for a hint.

Page 176 | 2.4LoopOutput | Unit 2: Design & Loops

Procedural Programming in C++

Problem 11

What is the output?
{

bool done = false;
int number = 1;

while (!done)

{
cout << number << endl;
number *= 2;
if (number > 4)
done = true;
}
}
Answer:

Please see page 171 for a hint.

Problem 12

What is the output?
{

int sum = 0;
int count;

for (count = 1;
count < 9;

count *= 2)
sum += count;

cout << "sum == << sum;
}
Answer:
Please see page 171 for a hint.
Problem 13
What is the output?
{
int count = 0;
while (count < 5)
count++;
cout << "count == " << count;
}
Answer:

Please see page 157 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.4 Loop Output | Page 177

Problem 14

What is the output?
{
int count = 10;
while (count < 5)
count++;
cout << "count == " << count;
}
Answer:
Please see page 157 for a hint.
Problem 15
What is the output?
{
int count = 0;
do
count++;
while (count < 3);
cout << "count == " << count;
}
Answer:
Please see page 159 for a hint.
Page 178 | 2.4 LoopOutput | Unit2: Design & Loops | Procedural Programming in C++

Please create a desk check for the following programs. There should be three tables, one for each of the
three problems. Start by annotating the code with line numbers. Each will be turned in by hand at the
beginning of class. Please print this sheet out and put your name on it:

Problem 1: Convert grade
{
int numGrade = 70;
char letter = 'F';
if (numGrade >= 80)
{
if (numGrade >= 90)
letter = 'A’;
else
letter = 'B’;
}
else
{
if (numGrade >= 70)
letter = 'C’;
else
letter = 'D';
}
}

Problem 2: Prompt

The user input is 2, 0, 10 in the following code:

{

int numCookies = ©;

while (numCookies < 4)

{
cout << "Daddy, how many cookies "
"can I have? ";
cin >> numCookies;
}

cout << "Thank you daddie!\n";

Continued on next page

Procedural Programming in C++ | Unit 2: Design & Loops | 2.4 Loop Output | Page 179

Continued from previous page

Problem 3: Counter
{

int iUp = o;
int iDown = 10;

while (iUp < iDown)

{

cout << iUp << "\t'
<< iDown << endl;

iUp++;

iDown--;

Please see page 171 for a hint.

Page 180 | 2.4 LoopOutput | Unit2: Design & Loops | Procedural Programming in C++

esign & Loops

2.5 Loop Design

Sam is upset because he is trying to find a copy of the ASCII Table containing both hexadecimal (base 16)
values and decimal (base 10) values. None of his favorite C+ + web sites have the right table and Google is
turning out to be useless. Rather than stooping to ask the professor, Sam decides to write his own code to
display the table. But how to start? What will the main loop look like? (For an example solution of this
problem, please see /home/cs124/examples/2-5-asciiTable.cpp).

Objectives
By the end of this class, you will be able to:

e Recognize the three main types of loops.
e Use aloop to solve a complex problem.

Prerequisites
Before reading this section, please make sure you are able to:

e Demonstrate the correct syntax for a WHILE, DO-WHILE, and FOR loop (Chapter 2.3).
e Create a loop to solve a simple problem (Chapter 2.3).

Three Types of Loops

It takes a bit of skill to think in terms of loops. The purpose of this chapter is to give you design practice
working with this difficult construct. Almost all looping problems can be broken into one of three categories:
counter-controlled, event-controlled, and sentinel controlled. It is usually a good idea to identify which of the
three types your problem calls for and design accordingly.

e Counter Controlled: Keep iterating a fixed number of times. The test is typically a single integer
that changes with each iteration.

e Event Controlled: Keep iterating until a given event occurs. The number of iterations is typically
unknown until the program runs.

¢ Sentinel Controlled: Keep iterating until a marker (called a sentinel) indicates the loop is done.
The test is a given variable (typically a bool) that is set by any one of a number of events.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.5 Loop Design | Page 181

Counter-Controlled

A counter-controlled loop is a loop executing a fixed number of times. Typically that number is known before
the loop starts execution. If, for example, I were to determine the number of students who had completed the
homework assignment, a counter-controlled loop would be the right tool for the job.

In almost all circumstances a for statement is used for counter-controlled loops because for statement are
designed for counting. Observe how the four parts to a FOR loop correspond to the four parts of the typical
counting problem:

Initialization: Boolean expression: Increment:

What needs to happen for the When does the loop terminate? Is there a counter or some other

loop to begin? state that changes as the loop
executes?

for (fint count = @; [count < 5 |; [count++)
lcout << count << endl;|

Body:

What occurs inside the loop?

Counter-controlled loops are readily identified by the presence of a single variable that moves through a range
of values. In other words, counter-controlled loops do not exclusively increment by one: they might increment
by 10 or powers of 3.

When designing with a counter-controlled loop, it is usually helpful to answer the following four questions:

e How does the loop start? In other words, what is the beginning of the range of values? This
corresponds to the initialization part of the FOR loop.

e How does the loop end: In other words, by what condition do you know that you have yet to
reach the end of the range of values? This corresponds to the Test or controlling Boolean
expression part of the FOR loop.

e What do you count by? In other words, as you move through the range of values, how does the
variable change? This corresponds to the Update part of the FOR loop.

e What happens each iteration? In other words, is some action taken at each step of the
counting? Frequently no action is taken so this step can be skipped. If there is an action, then it
goes in the Body section of the FOR loop.

Page 182 | 2.5LoopDesign | Unit 2: Design & Loops | Procedural Programming in C++

oun(

w[qoIJ

uonnjos

osTy 995 foSuarreyn

Example 2.5 - Counter-Controlled Loop

This example will demonstrate how to design a counter-controlled loop.

Sue heard the following story in class one day:

When Carl Friedrich Gauss was 6, his schoolmaster, who wanted some peace and quiet, asked the class
to add up the numbers 1 to 100. “Class,” he said, coughing slightly, “I'm going to ask you to perform a
prodigious feat of arithmetic. I'd like you all to add up all the numbers from 1 to 100, without making
any errors.” “You!” he shouted, pointing at little Gauss, “How would you estimate your chances of
succeeding at this task?” “Fifty-fifty, sir,” stammered little Gauss, “no more...”

What the schoolmaster did not realize was that young Gauss figured out that adding the numbers from
1 to n is the same as: sum = (n + 1)n / 2. Sue wants to write a program to verify this. Her program

will both add the numbers one by one, and use Gauss’ equation.

With counter-controlled loops, four questions need to be answered:

e Initialization: The loop starts at 1: int count = 1

e End: The loop stops after the number is reached: count <= n

e Update: The loop counts by 1’s: count++

e Body: Every iteration we increase the sum by count: sum += count

With these four answers, we can write the function.

int computeLoop(int n)

int sum = 9;

for (int count = 1; count <= n; count++)
sum += count;

return sum;

As a challenge, find values where Gauss’s equation does not work. Can you modify the program so it

works with all integer values?

The complete solution is available at 2-5-counterControlled.cpp or:

/home/cs124/examples/2-5-counterControlled.cpp

<2

Procedural Programming in C++ | Unit 2: Design & Loops |

2.5 Loop Design

Page 183

Unit 2

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-5-counterControlled.html
https://video.byui.edu/media/2.5+-+Counter+Controlled/0_1qympfd4/18442462

Event-Controlled

An event-controlled loop is a loop that continues until a given event occurs. The number of repetitions is
typically not known before the program starts. For example, if I were to write a program to prompt the user
tor her age but would re-prompt if the age was negative, an event-controlled loop is probably the right tool
tor the job. Typically event-controlled loops use while or do-while statements, depending if the loop needs to
execute at least once.

Boolean expression:

How do you know when you are done? Event controlled loops keep going until an event has occurred. In this
case, until the GPA is within an acceptable range.

while (gpa > 4.0 || gpa < 0.0)

n

cout << "Enter your GPA: ";
cin >> gpa;

Body:

What changes every iteration? Typically something happens during event-controlled loops. This may be a re-
prompt or a value is updated some other way. The programmer cannot predict how many iterations will be
required; it depends on execution.

When designing with an event-controlled loop, it is usually helpful to answer the following two questions:

¢ How do you know when you are done? In other words, what is the termination condition?
This condition maps directly to the controlling Boolean expression of a WHILE or DO-WHILE
loop.

e What changes every iteration? Unlike counter-controlled loops where the counter changes in a
predictable way, event controlled loops are typically driven by an external event. Usually there needs
to be code in an event-controlled loop to re-query this external event. Often this comes in the form
of re-prompting the user for input or reading more data from a file.

w

Notice how the two parts to an event-controlled loop (ending condition and what changes
every iteration) look a lot like the two of the four parts of a counter-controlled loop (start, ending
condition, counting, and what happens every iteration). This is because an event-controlled loop is a
sub-set of a counter-controlled loop. If the counter-controlled loop does not have a starting condition
or a counting component, then it probably is an event-controlled loop.

All FOR loops can be converted into a WHILE loop.

for (i = 0; // initialize i=0; // initialize
i< 10; // condition while (i < 10) // condition
i++) // increment {
cout << i << endl; cout << i << endl;
i++; // increment
}

All WHILE loops can be converted into a FOR loop.

while (grade < 70.0) for (; grade < 70.0;)
grade = takeClassAgain(); grade = takeClassAgain();

Page 184 | 2.5LoopDesign | Unit 2: Design & Loops | Procedural Programming in C++

oun(

Example 2.5 - Event-Controlled Loop

This example will demonstrate how to design an event-controlled loop.

w[qoIJ

Write a program to keep prompting the user for his GPA until a valid number is entered.

Please enter your GPA (0.0 <= gpa <= 4.0): 4.1
Please enter your GPA (0.0 <= gpa <= 4.0): -0.1
Please enter your GPA (0.0 <= gpa <= 4.0): 3.9
GPA: 3.9

uonnjos

With event-controlled loops, two questions need to be answered:

¢ End condition: The loop ends when the condition is reached 0 < gpa < 4.0.
e Update: Every iteration, we re-prompt the user for the GPA.

With these two answers, we can write our pseudocode:

WHILE gpa > 4.0 or gpa < 0.0
PROMPT for gpa
GET gpa

With this pseudocode, it is straight-forward to write the function:

float getGPA()

{
float gpa = -1.0; // any value outside the expected range will do
// loop until a valid value is received
while (gpa > 4.0 || gpa < 0.0)
{
cout << "Please enter your GPA (0.0 <= gpa <= 4.0): ";
cin >> gpa;
}
// return with the loot
assert(gpa <= 4.0 && gpa >= 0.0); // paranoia will destroy-ya
return gpa;
}

Observe how much more complex the C++ for getGPA() is than the pseudocode. This is because
variable initialization, comments, the text of the prompt, and asserts are not required for pseudocode

As a challenge, try to change the above function from a WHILE loop to a DO-WHILE loop. Both
loops are commonly event-controlled.

The complete solution is available at 2-5-eventControlled.cpp or:

/home/cs124/examples/2-5-eventControlled.cpp

osTy 395 foSuarreyn

Procedural Programming in C++

Unit 2: Design & Loops

2.5 Loop Design

Page 185

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-5-eventControlled.html
https://video.byui.edu/media/2.5+-+Event-Controlled/0_y31ral2v/18442462

Sentinel-Controlled

A sentinel is a guardian or gatekeeper. In the case of a sentinel-controlled loop, the sentinel is a variable used
to determine if a loop is to continue executing or if it is to terminate. We typically use a sentinel when multiple
events could cause the loop to terminate. In these cases, the sentinel could be changed by any of the events.
Typically event-controlled loops use while or do-while statements where the sentinel is a bool used as the
condition. Perhaps, this is best explained by example.

Example 2.5 - Sentinel-Controlled Loop

is example will demonstrate how to design a sentinel-controlled loop.
=8 Th ple will demonstrate how to desig tinel-controlled loop
O
Consider a professor trying to determine if a student has passed his class. There are many criteria to be
taken into account (the grade and whether he cheated, to name a few). Rather than making a single
highly-complex controlling Boolean expression, he decides to use a sentinel-controlled loop:
:? Welcome to CS 124!
E} What is your class grade? 109
' Did you cheat in the class? (y/n) y
=
Welcome to CS 124!
What is your class grade? 81
Did you cheat in the class? (y/n) n
Great job! Get ready for CS 165
The solution is to have one variable (passed) be set by a variety of conditions.
{
bool passed = false; // the sentinel. Initially we have
// not passed the class
// the main loop
while (!passed) // common sentinel, read
{ // "while not passed..."
cout << "\nWelcome to CS 124!\n";
// if you got a C or better, you may have passed...
» float grade;
= cout << "What is your class grade? ";
S; cin >> grade;
o if (grade >= 60.0)
= passed = true; // one of the ways the
// sentinel may change
// if you cheated, you did not pass
char cheated;
cout << "Did you cheat in the class? (y/n) ";
cin >> cheated;
if (cheated == 'y' || cheated == 'Y'")
passed = false; // another sentinel condition
}
cout << "Great job! Get ready for CS 165\n";
¥
78 The complete solution is available at 2-5-sentinelControlled.cpp or: Xyy
o
E; /home/cs124/examples/2-5-sentinelControlled.cpp
@
]

Page 186 | 2.5LoopDesign | Unit 2: Design & Loops | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-5-sentinelControlled.html
https://video.byui.edu/media/2.5+-+Sentinel+Controlled+Loop/0_4katr5gg/18442462

Problem 1

Answer:

Write a program to put the alphabet on the screen. A.K.A. Sesame Street Karaoke.

Please see page 182 for a hint.

Problem 2

Write a program to display the multiplication table of numbers less than 6.

1 2 3 4 5

2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 l1e 15 20 25

Answer:

Please see page 182 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops |

2.5 Loop Design | Page 187

Problem 3

Write a program to compute how many numbers under a user-specified value are both odd and a multiple

of 5.

What is the number: 20
The number of values under 20 that are both odd and a multiple of 5 are: 2

Answer:

Please see page 182 for a hint.

Problem 4

Write a function to compute whether a number is prime:

bool isPrime(int number);

Answer:

Please see page 49 for a hint.

Page 188 | 2.5LoopDesign | Unit 2: Design & Loops | Procedural Programming in C++

Write a function (displayTable()) to display a calendar on the screen. The function will take two
parameters:

® numbDays: The number of days in a month.
e offset: The offset from Monday. If the offset is zero, then the month starts on Monday. If the
offset is 2, the month starts on Wednesday. If the offset is 6, the month starts on Sunday.

This function will be “very similar” to the displayTable() function in Project 2. Please see the project for
details on the spacing between the columns and a hint on how the algorithm might work. Next write main()
so that it prompts the user for the number of days in the month and the offset.

Note that this is probably the most difficult assignment of the semester. Of course, this will also get you
very far along on the project as well. Please, allocate a couple hours for this assignment.

Example
Three examples. The user input is underlined.
Number of days: 30 Number of days: 28 Number of days: 31
Offset: 3 Offset: @ Offset: 6
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
1 2 3 1 2 3 4 5 6 1 2 3 4 5 6 7
4 5 6 7 8 9 10 7 8 9 10 11 12 13 8 9 10 11 12 13 14
11 12 13 14 15 16 17 14 15 16 17 18 19 20 15 16 17 18 19 20 21
18 19 20 21 22 23 24 21 22 23 24 25 26 27 22 23 24 25 26 27 28
25 26 27 28 29 30 28 29 30 31
Assignment

The test bed is available at:

testBed cs124/assign25 assignment25.cpp
Don’t forget to submit your assignment with the name “Assignment 25” in the header,

Please see page 182 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.5 Loop Design | Page 189

esig & Loops

2.6 Files

Sue is home for the Christmas holiday when her mother asks her to fix a “computer problem.” It turns out
that the problem is not the computer itself, but some data their bank has sent them. Instead of e-mailing a
list of stock prices in US dollars ($), the entire list is in Euros (€)! Rather than perform the conversion by
hand, Sue decides to write a program to do the conversion. This is done by opening the file with the list of
Euro prices, performing the conversion to US dollars, and writing the resulting values to another file.

Objectives

By the end of this class, you will be able to:
e Write the code to read data from a file.
e Write the code to write data to a file.

e Perform error checking on file streams.
e Understand the different ways the end-of-file marker can be found.

Prerequisites

Before reading this section, please make sure you are able to:

e Create a loop to solve a complex problem (Chapter 2.5).

Overview

After a program ends, all memory of its execution is removed. This fact is particularly unsatisfactory if the
program was charged with maintaining the user’s valuable data. To overcome this shortcoming; it is necessary
to save to and retrieve data from a file.

In many ways, writing data to a file is similar to writing data to the screen. In the file case, however, one
needs to specify the target file instead of just using cout. In other words, cout << number << endl; would put
the value of the variable number on the screen. If, on the other hand, the variable fout corresponded to a file,
one could put the value of number in the file with fout << number << endl;.

Similarly, reading data from a file is similar to accepting user input from a keyboard. Here again, the
programmer needs to specify the name of the source file. There is one additional difference, however. When
reading data from the keyboard, the programmer can assume there is an infinite amount of data on hand
(assuming an infinitely patient user!). Files, on the other hand, are of finite length. At some point, the end
will be reached and the program needs to be ready to handle that event.

Source Sink
Keyboard [~ __cin cout __—» Screen
infile.txt p~=T fin fout T outfile.txt

Page 190 | 2.6Files | Unit2: Design & Loops | Procedural Programming in C++

Writing to a File

When we write text to the screen, we use cout. This variable is defined in the iostream library and keeps track
of where the cursor is on the screen. In other words, as we continue to send data to the screen, the cursor
keeps moving to the right or down much the same way a typewriter advances. Sending data to a file is
conceptually the same; we need a variable to keep track of the location of the cursor in the file so, as more
data is sent to the file, the cursor advances. It follows that we would need a variable very similar to cout to do
this. However, there is one key difference between writing to a file and writing to the screen: there is only
one screen to write to while there may be many files. Therefore, it is necessary to also specify which file we are
writing to. Consider the following code:

Include the FSTREAM library:

All the functions needed to read and write
to a file are included in the fstream
library. It must be included just like

[#include <fstream> iostream.

void writeFile() Declare a stream variable:

You must declare a variable associated

declare the output stream
|é'{:str‘eam fout: o |/ with the file. Since this is an output stream
’ (writing to a file), use ofstream.

// open the file

[fout.open("greeting.txt"); I\ Open the stream

// write some text This will associate the variable with the file

[fout << "Hello world\n";
Insertion operator <<
// close the stream

[fout.close(); Write to the file as you would with cout

return;
} Close the stream

When finished, indicate you are done with
the close() function

Simple file writing, in other words, consists of several components: the fstream library, declaring a stream
variable (fout), opening the file, streaming data to the file, and closing it when finished.

We have previously mentioned that cout is a variable. While this is true, it is a special type of
variable: an object. An object is a variable that contains both data (position of the cursor on the screen) |
and functions (think cout.setw(5) and cout.getline(text, 256)) associated with the data. Objects and
the classes that define them are subjects of Object Oriented programming, the topic of CS 165. Don’t
worry about objects now; this is a topic for next semester.

FSTREAM library

When we were writing programs to display text on the screen, we needed to use the iostream library. This
library defined two variables (cout and cin) and the functions associated with them. When writing to a file,
we use the fstream library. This library contains two data types: ofstream and ifstream. OFSTREAM stands
tor Output File STREAM used to send data out of a program and into a file. This is done with:

#include <fstream> // need this line every time a file is used in the program

Procedural Programming in C++ | Unit 2: Design & Loops | 2.6 Files | Page 191

Declaring a stream variable

The next step is to declare a variable that will be used to send data to the file. Note that you may use any
variable name you like (as long as it conforms to the Elements of Style guidelines). As a rule, you might want
to use fout for a stream variable name because it looks and feels like “cout.” The only difterence is that F
stands for File while ¢ stands for Console (or screen). This is done with:

ofstream fout; // declare an output file stream variable.

It is possible to have more than one output file stream active at once. A large and advanced program might,
tor example, write one file for user data, another for a log, and a third to save configuration data. This is not
a problem; just have three ofstream variables:

{

ofstream foutData; // For user data

ofstream foutlLog; // For a log

ofstream foutConfig; // For config. data. All 3 can be used at the same time
}

Opening a file

After a stream variable is declared, the next step is to connect that variable to a given file. This can be done
with a “hard-coded” string (a string literal)...

fout.open("data.txt"); // Always use the same file. We seldom do this.

... or it could be done with a variable:

{
char fileName[256]; // string variable to hold the name of the file
cin >> fileName; // prompt user for the file name
fout.open(fileName); // open the file by referencing the variable.

}

It is also possible to both declare a stream variable and associate it with a file in one step:

ofstream fout; ofstream fout(fileName);
fout.open(fileName);

} ¥

Both of the above lines of code do exactly the same thing; it is a matter of convenience which you choose.
The final thing to note about opening a file is that, on occasion, there is no file to open. In other words, what
would happen when the user attempts to write to a directory that does not exist, to a thumb drive that is full,
or to a file where the user lacks the required permission? In each of these cases, an error message will need
to be presented to the user. Thus, it is absolutely necessary to check for the error condition and quit the file
writing process. Consider the following function:

Page 192 | 2.6Files | Unit2: Design & Loops | Procedural Programming in C++

/**

* Write GPA

* This function will write the user’s GPA to a file
**/

bool writeGPA(char fileName[], float gpa)

{
// declare and open the stream
ofstream fout(fileName); // declare and initialize in one step
if (fout.fail()) // check for error with fail()
return false; // indicate to caller that we failed!
// write the data
fout << gpa << endl; // actually do the work
// quite
fout.close(); // don’t forget to close when done
return true; // report success to the caller
}

This function takes the filename as a parameter. To call the function, it is nessary to specify a string as the first
parameter.

{
}

writeGPA("myGrade.txt", 3.9); // first parameter must be a string

Note how we check for error with the fail() function. If we are unable to open the file for writing for any
reason (permissions, lack of space, general hardware error, etc.), then fail() will return true. This will mean
that the function writeGPA() will be unable to do what it was asked to do: write to a file. We therefore
commonly make file functions return Boolean values: true corresponds to success and false corresponds to
failure.

By default, OFSTREAM will replace any file of the same name that is being written. This
might be what the programmer intended if there is no other file or if data is to be updated. However,
it is often necessary to append data onto the end of a file rather than replace it. This can be done by
adding another parameter to the output stream declaration:

ofstream fout(fileName, ios::app);

In this case, the ios: :app means to append the file rather than overwrite. Other modes include.

10s::app Append output to end of file (EOF)

ios::ate Seek to EOF when the file is opened

ios::binary Open file in binary mode

ios::in Open file for reading. This happens automatically for ifstream
ios::out Open file for writing. This happens automatically for ofstream
ios::trunc Overwrite existing file instead of truncating. Default for ofstream

Procedural Programming in C++ | Unit 2: Design & Loops | 2.6 Files | Page 193

Streaming data to a file

We use fout to send data to a file in exactly the same way we use cout to send data to the screen. This means
that all tools we had for screen display we also have for file writing. Consider the following code:

{
// configure FOUT for displaying money, just like COUT

fout.setf(ios::fixed);
fout.setf(ios::showpoint);
fout.precision(2);

// display my budget

fout << "\t$" << setw(9) << income << endl;

fout << "\t$" << setw(9) << spending << endl;

fout << "\t --------- \n";

fout << "\t$" << setw(9) << income - spending << endl;

}

The above code might be very familiar if cout were used instead of fout. The only real difference is that this
data is sent to a file rather than the screen

Sue’s Tips

While it is easy to verify the screen output of a program, it is often inconvenient to verify the
file output. As a result, beginner programmers tend to forget details such as putting spaces
between numbers. One easy way to work around this tendency is to first write your writeFile()
tunction with couts. After you have run the program a few times and you are sure of the
formatting, turn your couts in to fouts to send the same data to the file.

Closing the file

When we are finished writing data to a file, it is important to remember to close the file. On primitive
operating systems (think MS-DOS), an un-closed file could never be reopened. Modern operating systems,
however, will handle this step for you if you forget. However, it is “good form™ to close a file as soon as the
last data has been written to it:

fout.close();

Page 194 | 2.6Files | Unit2: Design & Loops | Procedural Programming in C++

http://en.wikipedia.org/wiki/Ms-dos

Reading from a File

Just as writing text to a file with fout is similar to writing text to the screen with cout, reading text from a file
has a cin equivalent: fin. There is, however, one important difference between reading text from the keyboard
and reading text from a file. Eventually the end of the file will be reached. It is therefore necessary to make
sure logic exists in the program to handle the unexpected end-of-file condition.

As with writing data to a file, several steps are involved: using the FSTREAM library (#include <fstreams),
declaring the input file stream variable (ifstream fin;), checking for errors (fin.fail()), using the extraction
operator (fin >> data;), and closing the file.

Include the FSTREAM library:

As with writing to a file, the code
necessary to read from a file is in fstream

|#inc1ude <fstream> Declare a stream variable:

You must declare a variable associated

i Fil
int readFile() with the file. Since this is an input stream

{ // declare the output stream (reading from a file), use ifstream
ifstream fin("number.txt");
if (fin.fail()) Check for errors
return -1; |
If the file does not exist or you don’t have
// read the data permission to read it, you must handle it
int data;
|-Fin >> data; \ Extraction operator >>
// close the stream Read from a file just like you would with
[fin.close(); cin
return data;
} Close the stream

When finished, indicate you are done with
the close() function

FSTREAM library

As with writing to a file, it is necessary to remember to include the FSTREAM library. If this step is skipped,
one can expect the following compile error:
example.cpp: In function “int readFile()”:

example.cpp:6: error: aggregate “std::ifstream fin” has incomplete type and cannot be
defined

This cryptic compiler error means that std::ifstream is an unknown type. The reason, of course, is that
IFSTREAM is defined in fstream. Therefore, don’t forget:

#include <fstream>

Procedural Programming in C++ | Unit 2: Design & Loops | 2.6 Files | Page 195

Declaring a stream variable

Input stream variables are defined in much the same way as output stream variables. The most important
difference, of course, is we use ifstream for Input File STREAM. Also, like output streams, we can declare
and initialize the variable in a single line.

{ {
ifstream fin; ifstream fin(fileName);
fin.open(fileName);

} }

Again, by convention, it is common to use fin for the variable name to emphasize the relationship with cin.

Check for errors

As with writing to a file, an essential part of reading from a file includes checking for errors. The same class
of errors for writing to a file exists when reading from a file (no permissions, missing directory, general file-
system error, etc.). Additionally, the potential exists that there might not be any data in the file to read. In all
these cases, we can detect if an error occurred with the fin.fail() function call.

{
ifstream fin(fileName); // attempt to open the file
if (fin.fail()) // check for any type of error
{
cout << "Unable to open file " // let the user know!
<< fileName << endl; // he probably wants to know the file name
return false; // report failure to the user
}
}

Read the data

We write (to the screen or to a file) using the insertion operator (<<). Similarly, all read operations are
done with the extraction operator (>>).

{
float temperature; // first item is expected to be a number
char units[256]; // next item is expected to be text
fin >> temperature >> units; // read both just like with cin

}

There are two ways we can tell if the read failed for any reason. The first is to check for a read failure. This
can be accomplished with another fin.fail() function call. The second is to see if the extraction operator
itself failed. The following two lines of code are equivalent:

{ {
int value; int value;
fin >> value; if (fin >> value)
if (!fin.fail()) cout << "Success!\n";
cout << "Success!\n";
} ¥

In other words, the extraction operator (>>) is actually a function call returning false when it fails for any
reason. One reason may be that the file has been corrupted (or even erased!) during the read. Another may
be that there is no more data in the file. Another way to state this last reason is that the “end-of-file” condition
may have been met.

Page 196 | 2.6Files | Unit2: Design & Loops | Procedural Programming in C++

Reading to the end of the file

At the end of every file in a file system is a special marker indicating that there is no more data in the file. This
can be thought of as the “end of road” marker on a highway. We can ask the file stream if we are at the end
of file (EOF) with a function call:

{
if (fin.eof()) // returns TRUE if we are at the end

cout << "There is no more data!\n";

}

This means that there are two ways to read all the data from a file. The first is to continue looping until the
EOF marker is reached. The second is to read until an error has occurred on the read:

EOF Read Failure

IF the end of the file character is encountered, the If a read failure occurs, the extraction operator will
EOF flag will be set. You can check for this at any return false. This can be checked on any read.
time:

{ {
ifstream fin("file.txt"); ifstream fin("file.txt");
while (!fin.eof()) char text[256];
{ while (fin >> text)
char text[256]; {
fin >> text; cout << text << endl;
cout << text << endl; }
}
fin.close(); fin.close();
} }

These two methods are not the same. Consider the case when there is a word and a space in the file.

EIEAESENES
In the first case, we will read the word on the first loop and display the text on the screen. On the second
iteration, we will go into the body of the loop (because we are not yet at the end of the file: there is still a
space left!). When we attempt to read the next word with fin >> text, we fail (there is no non-space data in

the file after all). In this case, we will not change the value of text so the word will be repeated on the screen.

EOF ‘

In the second case, we will successfully read the word on the first iteration of the loop. This, of course, will
be displayed on the screen in the body of the loop. On the second iteration, we will fail to read (there is no
non-space data in the file) so the loop will exit. This means the last word will not be repeated on the screen.

For more details on the aforementioned differences between using the EOF method and the read-failure
method of reading from a file, please see Example — End of File on the following page.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.6 Files | Page 197

Closing the file

As with writing data to a file, it is important to always remember to close the file that was read:

fin.close();

With most operating systems, the failure of a program to close a file is not catastrophic; the
operating system will quietly close it for you once the program exits. This is not true on some mobile
platforms or older operating systems. An improperly closed file or a file that has not been closed will
remain locked and forever unavailable for use. Thus, it is good form to always close a file as soon as
reading or writing has been completed.

Filenames

There is one final complication that arises when working with files: the necessity of dealing with filenames.
Filenames are c-strings, something we learned about in Chapter 1.2 (page 38) but have done very little with
since. The reason for this is that handling c-strings is a bit quirky. We cannot return a c-string from a function
as we would any other data-type. Instead, we need to pass it as a parameter.

When passing a c-string, or any other array (which we will learn about in Unit 3), it comes in as pass-by-
reference even though we don’t have use the ‘&’ operator. Thus the correct way to write a function to prompt
the user for a filename is:

/***

* GET FILENAME

* Prompt the user for a filename.
**/

void getFilename(char fileName[]) // the fileName parameter behaves
{ // like pass-by-reference
cout << "What is the name of the file? ";
cin >> fileName; // text entered here will be sent
} // back to the caller

If there are some things about this function that you don’t understand, don’t worry! We will learn more about
this on page 245.

Page 198 | 2.6Files | Unit2: Design & Loops | Procedural Programming in C++

ownd(

wR[qoIJ

oS

uonn

OS[Y 99§

Example 2.6 - End of File

This example will demonstrate how to read all the content of the file using two techniques: either using

the EOF method or the Read Failure method.

Write a program to read all the text out of a file and display the results on the screen. Consider, for

example, the following text in a file in 2-6-eof . txt:
I love software development!

The output is:
Filename? 2-6-eof.txt

Use the EOF method? (y/n): y
'I' 'love' 'software' 'development!' 'development!'

The first solution is to use EOF method.

void usingEOF(const char filename[])

{

// open

ifstream fin(filename);

if (fin.fail())

{
cout << "Unable to open file " << filename << endl;
return;

}

// get the data and display on the screen

char text[256];

// keep reading as long as:

// 1. not at the end of file

while (!fin.eof())

{
// note that if this fails to read anything (such as when there
// is nothing but a white space between the file pointer and the
// end of the file), then text will keep the same value as the
// previous execution
fin >> text;
cout << """ << text << "' "

}

cout << endl;

// done

fin.close();

}

The second solution uses the Read Failure method. Everything is the same except the loop:

// keep reading as long as:
// 1. not at the end of file
// 2. did not fail to read text into our variable
// 3. there is nothing else wrong with the file
while (fin >> text)

cout << """

<< text << N

The complete solution is available at 2-6-cof.cpp or:
/home/cs124/examples/2-6-eof.cpp

Procedural Programming in C++ | Unit 2: Design & Loops

2.6 Files

Page 199

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-6-eof.html
https://video.byui.edu/media/2.6+-+End+of+File/0_hctc8257/18442462

Example 2.6 - Read Data

(? This example will demonstrate how to read a small amount of data from a file. This will include two
g data types (a string and an integer). All error checking will be performed.
Consider the following file (2-6-readbata.txt):
= Sue 19
S
S,_D." Read the file and display the results on the screen.
3

What is the filename? 2-6-readData.txt
The user Sue is 19 years old

The man work is performed by the read() function, taking a filename as a parameter.

bool read(char fileName[]) // filename we will read from
{
// open the file for reading
ifstream fin(fileName); // connect to fileName
if (fin.fail()) // never forget to check for errors
{
cout << "Unable to open file " // tell the user what happened
<< fileName << endl;
return false; // return and report
}

// do the work

char userName[256];

int userAge;

fin >> userName >> userAge; // get two pieces of data at once
if (fin.fail())

@
=2
g
i
e
=)

cout << "Unable to read name and age from
<< fileName << endl;
return false;

}

// user-friendly display

cout << "The user " // display the data
<< userName
<< is "
<< userAge <<

"

years old\n";

// all done
fin.close(); // don’t forget to close the file
return true; // return and report
¥
9_ As a challenge, can you change the above program to accommodate the user’s GPA. This will mean that
S there are three items in the file:
g
o Sue 19 3.95
o
"<l The complete solution is available at 2-6-readData.cpp or: i
o
E: /home/cs124/examples/2-6-readData.cpp
@
o

Page 200 | 2.6Files | Unit2: Design & Loops | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-6-readData.html
https://video.byui.edu/media/2.6+-+Read+Data/0_0pia9514/18442462

w[qoIJ

oS

uonn

osTy 92 foSuarreyn

Example 2.6 - Read List

This example will demonstrate how to read large amounts of data from a file. In this case, the file
consists of a list of numbers. The program does not know the size of the list at compile time.

Write a program to sum all the numbers in a file. The numbers are in the following format:

34
25
10
43

The program will prompt the user for the filename and display the sum:

What is the filename: 2-6-readList.txt
The sum is: 112

The function sumbata() does all the work in this example. It is important to note that the program does
not need to remember all the files read from the file. Once the value is added to the sum variable, then
it can be ignored.

int sumData(char fileName[])
{
// open the file
ifstream fin(fileName);
if (fin.fail())
return 0; // some error message

Unit 2

// read the data

int data; // always need a variable to store the data
int sum = 0; // don.t forget to initialize the variable
while (fin >> data) // read: “while there was not an error”

sum += data; // do the work

// close the stream
fin.close();
return sum;

See if you can modify the above program (and the file that it reads from) to work with floating point
numbers.

The complete solution is available at 2-6-readList.cpp or:

/home/cs124/examples/2-6-readlList.cpp

Procedural Programming in C++ | Unit 2: Design & Loops | 2.6 Files | Page 201

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-6-readList.html
https://video.byui.edu/media/2.6+-+Read+List/0_45uoxuig/18442462

Example 2.6 - Round Trip

A common scenario is to save data to a file then read the data back again next time the program is run.
We call this “round-trip” because the data is preserved through a write/read cycle. This program will
demonstrate that process.

ownd(

Consider a file consisting of a single floating point number:

30.36

Write a program to read the file, prompt the user for a value to add to the value, and write the updated
value back to the file.

wR[qoIJ

Account balance: $30.36
Change: $5.20
New balance: $35.56

First, the program will read the balance from a file. If no balance is found, then return 0.0:

float getBalance()

{
// open the file
ifstream fin(FILENAME); // the filename is constant because
if (fin.fail()) // it needs to be same every time
return 0.0; // if no file found, start at $0.00
// read the data
float value = 0.0;
fin >> value; // read the old value
if (fin.fail()) // if we cannot read this value for any
return 0.0; // reason, return $0.00
// close and return the data
fin.close();
g? return value; // send the value back to main()
=3 }
2.
Bl Then, after the user has been prompted for a new value and the balance has been updated, the new
balance is written to the same file.
void writeBalance(float balance)
{
// open the file for writing
ofstream fout(FILENAME); // make sure it is the same file as
// we used for getBalance()
// write the data
fout.precision(2); // format fout for money just like we
fout.setf(ios::fixed); // would do for cout.
fout.setf(ios::showpoint);
fout << balance << endl; // it is “good form” to end with endl
}
"<l The complete solution is available at 2-6-roundTrip.cpp or: Xuy
(¢)
E: /home/cs124/examples/2-6-roundTrip.cpp
[72]
o

Page 202 | 2.6Files | Unit2: Design & Loops | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/2-6-roundTrip.html
https://video.byui.edu/media/2.6+-+Round+Trip/0_b0vpstcb/18442462

Problem 1

What is in the file “data.txt™?

void writeData(int n)

{
ofstream fout;
fout.open("data.txt");
for (int 1 = 0; i < n; i++)

fout << i * 2 << endl;

fout.close();
return;

}

int main()

{
writeData(4);
return 0;

}

Answer:

Please see page 193 for a hint.

Problem 2

Given the following function:

bool writeFile(char fileName[])

{ ofstream fout;
fout.open(fileName);
fout << "Hello World!\n";
fout.close();
return true;

}

Which would not cause the program to fail?

writeFile(data.txt);
writeFile("");
writeFile(10);

writeFile("data.txt");

Please see page 193 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.6 Files | Page 203

Problem 3

e Call the function numbers()
e Dass the file name in as a parameter
e Do error checking

Answer:

Write a function to put the numbers 1-10 in a file:

Please see page 193 for a hint.

Problem 4

What is the best name for this function?

void mystery(char f1[], char f2[])
{

ofstream fout;
ifstream fin;

fin.open(f1);
fout.open(f2);

char text[256];
while (fin.getline(text, 256))
fout << text << endl;

fin.close();
fout.close();

return;

Answer:

Please see page 196 for a hint.

Page 204 | 2.6Files | Unit2: Design & Loops

Procedural Programming in C++

Problem 5

Given the following file (grades.txt) in the format <name> <score>:

Jack 83
John 97
Jill 56
Jake 82
Jane 99

Write a function to read the data and display the output on the screen. Name the function read().

Please see page 196 for a hint.

Problem 6

Write a function to:

e Open a file and read a number. Display the number to the user.
e Prompt the user for a new number.
e Save that number to the same file and quit.

The old number is "42". What is the new number? 104

Answer:

Please see page 202 for a hint.

Procedural Programming in C++ | Unit 2: Design & Loops | 2.6 Files |

Page 205

Please write a program to read 10 grades from a file and display the average. This will include the functions
getFileName(), displayAverage() and readFile()

En

ileName average

v
[getFileName} [readFile } [display }

This function will prompt the user for the name of the file and return it. The prototype is:

getFilename()

void getFileName(char fileName[]);

Note that we don’t return text the way we do integers or floats. Instead, we pass it as a parameter. We will
learn more how this works in Section 3.

readFile()
This function will read the file and return the average score of the ten values. The prototype is:

float readFile(char fileName[]);

Hint: make sure you only read ten values. If there are more or less in the file, then the function must report
an error. Display the following message if there is a problem with the file:

Error reading file "grades.txt"

display()

This function will display the average score to zero decimals of accuracy (rounded). The prototype is:

void display(float average);

Example

Consider a file called grades.txt (which you can create with emacs) that has the following data in it:

90 86 95 76 92 83 100 87 91 88

When the program is executed, then the following output is displayed:

Please enter the filename: grades.txt
Average Grade: 89%

Assignment
The test bed is available at:

testBed cs124/assign26 assignment26.cpp

Don’t forget to submit your assignment with the name “Assignment 26” in the header.

Please see page 201 for a hint.
Page 206 | 2.6Files | Unit2: Design & Loops | Procedural Programming in C++

Unit 2 Practice Test

Mike’s teacher told his class that a flipped coin lands on “heads” half the time and “tails” the other half.
“That means that if I flip a coin 100 times, it should land on heads exactly fifty times!” said Mike. Mike’s
teacher knows that the law of probability does not quite work that way. To demonstrate this principle, she
decides to write a program.

Program

Write a function to simulate a coin flip, returning true if the coin lands on “heads” and false if it lands on
“tails.” Next, prompt the user for how many trials will be needed for the experiment. Finally, display how
many “heads” and “tails” where recorded in the experiment.

Example

User input is underlined.

How many coin flips for this experiment: 100
There were 49 heads.
There were 51 tails.

Assignment

Please:

e Start from the standard template we use for homework assignments:

/home/cs124/tests/templateTest2.cpp

e Make sure your professor’s name is in the program header.
e Run test bed with

testBed cs124/practice2l test2.cpp

e Run style checker

Note that the following code might come in handy:

#include <stdlib.h> // needed for the rand(), srand()

#include <ctime> // needed for the time function
int main(int argc, char **argv)
{

// this code is necessary to set up the random number generator. If

// your program uses a random number generator, you will need this

// code. Otherwise, you can safely delete it. Note: this must go in main()
srand(argc == 1 ? time(NULL) : (int)argv[1][1]);

// this code will actually generate a random number between @ and 999

cout << rand() % 1000 << endl;

Continued on the next page

Procedural Programming in C++ | Unit 2: Design & Loops | Unit 2 Practice Test | Page 207

Grading for Test2

Sample grading criteria:

Expressions
10%

Modularization

20%

Loop
40%

Output
20%

Style
10%

Exceptional

100%

The expression
for the equation
is elegant and
easy to verify
Functional
cohesion and
loose coupling is

used throughout

The loop is both
elegant and
efficient

Zero test bed
errors

Well
commented,
meaningful
variable names,
effective use of
blank lines

The expression
correctly computes
the equation

Zero syntax errors in
the use of functions,
but room exits for
improvements in
modularization

The loop is
syntactically correct
and used correctly

Looks the same on
screen, but minor test
bed errors

Zero style checker
errors

Acceptable
70%
One bug exists

Data
incorrectly
passed
between
functions

The loop is
syntactically
correct or is
used correctly
One major test
bed error

One or two
minor style
checker errors

Continued from previous page

Developing
50%

Two or more
bugs exist

At least one bug
in the way a
function is
defined or
called

Elements of the
solution are
present

The program
compiles and
elements of the
solution exist

Code is
readable, but
serious style
infractions

Missing

0%

The expression
is missing

All the code
exists in one
function

No attempt
was made to
use a loop

Program
output does
not resemble
the problem or
fails to compile
No evidence of
the principles
of elements of
style in the
program

Solution available at:

/home/cs124/tests/practice2l.cpp

Page 208 |

Unit 2 Practice Test |

Unit 2: Design & Loops

| Procedural Programming in C++

Unit 2 Project : Calendar Program

Create a calendar for any month of any year from 1753 forward. This is similar to the cal utility on the Linux
system. Prompt the user for the numeric month and year to be displayed as shown in the example below.
Your calculations to determine the first day of the month shall start with January 1, 1753 as a Monday. The
challenge here is to take into account leap years.

This project will be done in three phases:

e Project 05 : Design the calendar program
e Project 06 : Compute the offset for a given month and year
e Project 07 : Display the calendar table for a given month and year

Interface Design

There are three parts of the interface design: the output (that which is displayed on the screen during normal
operation), the input (that which the user provides), and the errors (when the user enters different data than
the program expects).

Output

The following is a sample run of the program. The input is underlined.

Enter a month number: 1
Enter year: 1753

January, 1753
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

The table is formatted in the following way:

January, 1753
Su Mo Tu We Th Fr S5a

1 2 3 4 5 6

7 8 9 18 11 12 13
kgﬁﬂ4 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 314

Procedural Programming in C++ | Unit 2: Design & Loops | Unit 2 Project : Calendar Program | Page 209

http://aa.usno.navy.mil/faq/docs/leap_years.php

¢ U]

Input
First the user will be prompted for the month number:

Enter a month number: 1
Next the user will be prompted for the year:

Enter year: 1990

Errors
When the program prompts the user for a month, only the values 1 through 12 are accepted. Any other input
will yield a re-prompt:

Enter a month number: 13

Month must be between 1 and 12.
Enter a month number: @
Month must be between 1 and 12.
Enter a month number: 1

The same is true with years; the user input must be greater than 1752:
Enter year: 90

Year must be 1753 or later.
Enter year: 1990

Project 05

Write a structure chart for the calendar program. Make sure that all the functions exhibit the highest level of
cohesion and the lowest level of coupling.

On campus students are required to attach this rubric to your design document. Please self-grade.

Page 210 | DProject 2: Calendar Program | Unit 2: Design & Loops | Procedural Programming in C++

https://content.byui.edu/file/26c8ce4d-40b2-44ba-9985-526198d35faa/1/124.Project%202%20-%20Rubric.pdf

Project 06

The second part of the Calendar Program project (the first part being the structure part due earlier) is to write
the pseudocode for two functions: computeOffset() and displayTable().

1. Write the pseudocode for the function computeoffset. This function will determine the day of the
week of the first day of the month by counting how many days have passed since the 1* of January,
1753 (which is a Monday and offset == @). That number (numbays) divided by 7 will tell us how
many weeks have passed. The remainder will tell us the offset from Monday. For example, if the
month begins on a Thursday, then offset == 3. The prototype for the function is:

int computeOffset(int month, int year);

Please do not plagiarize this from the internet; you must use a loop to solve the problem. The output
tor this function is the following:

Day
Sunday
Monday
Tuesday

Wednesday
Thursday

Friday
Saturday

2. Write the pseudocode for the function displayTable. This function will take the number of days in a
month (numDays) and the offset (offset) as parameters and will display the calendar table. For example,
consider numbays == 30 and offset == 3. The output would be:

Su Mo Tu We Th
1

4 5 6 7 8
11 12 13 14 15
18 19 20 21 22
25 26 27 28 29

Fr
2
9

16

23

30

Sa

3
10
17
24

There are two problems you must solve: how to put the spaces before the first day of the month, and
how to put the newline character at the end of the week. The prototype of the function is:

void displayTable(int offset, int numDays);

Procedural Programming in C++

Unit 2: Design & Loops | Unit 2 Project : Calendar Program | Page 211

¢ U]

Project 07

The final part of the Calendar Program project is to write the code necessary to make the calendar appear on
the screen:

Enter a month number:
Enter year: 1753

=

January, 1753
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

A few hints:

e Check the case where offset == 6 when the month begins with Sunday. July 2001 is an example of
such a month. You do not want to have a blank line between the column headers (the days of the
week) and the day numbers.

e Check the case where the last day of the month is on a Saturday. March 2001 is an example of such
a month. You do not want a blank row at the bottom of the calendar.

e Use the cal program built into the Linux system when you test the program by hand.
An executable version of the project is available at:

/home/cs124/projects/prjoe7.out

Please do the following;:

1. Start with the code written in Project 06.
2. Fix any bugs that escaped your notice the first time through.
3. Verify your solution with testBed:

testBed cs124/project@7 project07.cpp

4. Submit you code with "Project 07, Calendar"in the program header.

Page 212 | DProject 2: Calendar Program | Unit 2: Design & Loops | Procedural Programming in C++

Fr

£ 7/

Unit . Pointers & Arrays

T

3.0 ATy SYNEAX coeiiiiiiiiiie ettt et ettt 214
3.1 AIray DESIZN ..ot 233
B2 SEIINES 1t 242
B3 POINLELS .o 255
3.4 Pointer ArithmetiCooooiiiiiiii 269
3.5 Advanced Conditionals ... 284
Unit 3 Practice TeStoooiiiiiiiiii 301
Unit 3 Project : MadLibcc.cooiiiiiiiiiiiiiice e 303

Procedural Programming in C++ | Unit 3: Pointers & Arrays | Unit 2 Practice Test | Page 213

Unit 3. Pointers & Arrays

3.0 Array Syntax

Sam is working on a function to compute a letter grade from a number grade. While this can be easily done
using IF/ELSE statements, he feels there must be an easier way. There is a pattern in the numbers which he
should be able to leverage to make for a more elegant and efficient solution. While mulling over this problem,
Sue introduces him to arrays...

Objectives

By the end of this class, you will be able to:
e Declare an array to solve a problem.
e Write a loop to traverse an array.

e Predict the output of a code fragment containing an array.
e Pass an array to a function.

Prerequisites
Before reading this section, please make sure you are able to:

e Demonstrate the correct syntax for a WHILE, DO-WHILE, and FOR loop (Chapter 2.3).
e Create a loop to solve a simple problem (Chapter 2.3).

Overview

In the simplest form, an array is a “bucket of variables.” Rather than having many variables to represent the
values in a collection, we can have a single variable representing the bucket. There are many instances when
working with buckets is more convenient than working with individual data items. One example is text:

char text[256];

In this example, the important unit is the collection of characters rather than any single character. It would
be extremely inconvenient to have to manage 256 individual variables to store the data of a single string.
There are three main components of the syntax of an array: the syntax for declaring an array, the syntax for
referencing an individual item in an array, and the syntax for passing an array as a parameter:

Declaring an arra Referencing an arra Passing as a parameter

Syntax: Syntax: Syntax:
<Type> <variable>[size] <variable>[<index>] (<Type> <variable>[])
Example: Example: Example:
int grades[200]; cout << grades[i]; void func(int grades[])
A few details: A few details: A few details:
* Any data-type can be used. e The index starts with 0 and * You must specify the base-
e The size must be a natural must be within the valid type.
number {1, 2, etc.}, not a range. ® No size is passed in the
variable. square brackets [].

Page 214 | 3.0 Array Syntax | Unit 3: Pointers & Arrays | Procedural Programming in C++

Declaring an Array

A normal variable declaration asks the compiler to reserve the necessary amount of memory and allows the
user to reference the memory by the variable name. Arrays are slightly different. The amount of memory
reserved is computed by the size of each member in the list multiplied by the number of items in the list.

{
int |grades|[[10];
}

Base-type: Name: Size:
The Base-type is the common The name of the bucket of Specified at declaration time.
data-type for all elements in the variables. Note that it refers to .

. . e Determines the amount of
array. This can be any data-type. the collection rather than to any

space the array will use.

o Once the size is specified, it
cannot be changed.

o The size cannot be a variable!
It must be a literal (a number
like 5) or a constant.

individual item.

The first part is the base-type. This is the type of data common to all items in the list. In other words, we
can’t have an array where some items are integers and others are characters. We can use any data-type as the
base-type. This includes built-in data-types (int, float, bool, etc.) as well as custom data-types we will create
in future semesters.

The second part is the name. Since the array name refers to the collection of elements (as opposed to any
individual element), this name is commonly plural. Another common naming convention is to have the “1ist”
prefix (int listGrade[10];).

The final part is the size. It is important to note that the compiler needs to know the size of the array at
compilation time. In other words, we cannot make this a variable that the user provides the value for. It is
legal to have a literal (example: 10), a constant earlier defined (example: const int SIZE = 10;) or a #define
resolving to a constant or a literal (example: #define SIzE 10). One final note: once the size has been specified,

it cannot be changed. We will learn how to specify the size at run-time using a variable later in the semester
(Chapter 4.1)

While it is illegal to have a variable in the square brackets of an array declaration, our compiler
lets it slide. It is a very bad idea to rely on a given compiler’s non-adherence to the language standard: |
it will make it difticult to port (or move) the code to another compiler.

That being said, the new C+ + standard (called C++11) makes an allowance on this front. Please read
about generalized constant expressions: C++11 Generalized constant expressions.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.0 Array Syntax | Page 215

http://en.wikipedia.org/wiki/C%2B%2B11#constexpr_.E2.80.93_Generalized_constant_expressions

Initializing

When declaring a simple variable, it is possible to initialize the variable at the same time:

{
int variablel; // declared but uninitialized
variablel = 10; // now it is initialized
int variable2 = 10; // declared and initialized in one step
}

It is also possible to declare and initialize an array variable in one step:

{
char grades[4] =

Observe how the list of items to initialize are delimited with curly braces ({}). Since the Elements of Style
demands that each curly brace be on its own line, we align them with the base-type. Finally, the individual
items in the array are presented in a comma-separated list.

Declaration In memo Description

Though six slots were set aside, they

int array[6]; L S N A A remain uninitialized. All slots are filled
with unknown values.

int array[6] = The initialized size is the same as
3,6,2,9 1, 8 362918 the declared size so every slot has

}; a known value.

int array[6] = The first 2 slots are initialized,
3, 6 3|6|e|e|e]oe the balance are filled with 0. This is a

}s partially filled array.

int array[] = Declared to exactly the size necessary to
3,6, 2,9, 1, 8 316|2|9f1]8 fit the list of numbers. The compiler will

}; count the number of slots

) This is the easiest way

int array[6] = {}; o(e|o|0|0]e0 to initialize an array with

zeros 1n all the slots

Page 216 | 3.0 Array Syntax | Unit 3: Pointers & Arrays | Procedural Programming in C++

Arrays are stored in memory in the most efficient way imaginable: just a continuous block of

of memory. Consider the following memory-dump of a simple declaration of an array of characters:

char grades[5] = {'A"', 'C', 'B', 'A', 'B'};

fc|a
00
00
b2
00
00
0x0012FFA ff v
In this example, the | memory starts at

location ex@012FF5s.

Declaring an array of strings

Since arrays of characters are called strings, how do we make arrays of strings? In essence, we will need an
array of arrays. We call these multi-dimensional arrays and they will be the topic of Chapter 4.0.

{
char listNames[10][256]; // ten strings
}

Observe the two sets of square brackets. The first set ([10]) refers to the number of strings in the array of
strings. The second set ([256]) refers to the size of each individual string in the list. As a result, we will have
ten strings, each 256 bytes in length. This means the total size of listNames is sizeof(char) * 10 * 256.

We can also initialize an array of strings at declaration time:

{
char listNames[][256] = // the number of strings is not necessary,
// the compiler can count
"Thomas",
"Edwin", // use either "quotes" or {'E', 'd', 'w', .. },
"Ricks"
s
1

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.0 Array Syntax | Page 217

adjacent memory locations. The array variable itself refers to (or “points to”) the first item in that block |

https://byui.box.net/shared/263x5rcpl97xgvjfbkf1

Referencing an Array

In mathematics, we can define a sequence of numbers much like we define arrays of numbers in C++. We
refer to individual members of a sequence in mathematics with the subscript notation: X, is the second
element of the sequence X. We use the square bracket notation in C++:

cout << list[3] << endl; // Access the fourth item in the list

One important difference between arrays and mathematical sequences is that the indexing of arrays starts at
zero. In other words, the first item is 1ist[0] and the second is 1ist[1]. The reason for this stems from how
arrays are declared. Recall that the array variable refers to (or points to) the first item in the list. The array
index is actually the offset from that first item. Thus, when one references 1ist[2], one is actually saying
“move 2 spots from the first item.”

Loops
Since indexing for arrays starts at zero, the valid indices for an array of 10 items is 0 ... 9. This brings us to
our standard FOR loop for arrays:

for (int i = @; i < num; i++)
cout << list[i];

From this loop we notice several things. First, the array index variable is commonly the letter i or some
version of it (such as iList). This is one of the few times we can get away with a one letter variable name.

The second point is that we typically start the list at zero. If we start at one, we will skip the first item in the
list.

The Boolean expression is (i < num). Observe how we could also say (i <= num - 1). This, however, is
needlessly complex. We can read the Boolean expression as “as long as the counter is less than the number of
items in the list.”

~

y
ﬂ It is very bad to index off the end of an array. If, for example, we have an array of 10

Sl numbers, what happens when we attempt to access the 20" item?

{

int list[1e@];

int i = 20;

list[i] = -1; // error! Off the end of the list
}

The compiler will not prevent such program logic mistakes; it is up to the programmer to
catch these errors. In the above example, we will assign the value -1 to some random location
of memory. This will probably cause the program to malfunction in an unpredictable way.
The best way to prevent this class of problems is to use asserts to verify our referencing:

{
int list[1e@];
int i = 20;
assert(i >= @ && i < 10); // much easier bug to fix
list[i] = -1;
}

Always use an assert to verify that the index is in the range of lc%al values!

Page 218 | 3.0 Array Syntax | Unit 3: Pointers & Arrays | Procedural Programming in C++

Referencing an array of strings

Arrays of strings are also referenced with the square brackets. However, the programmer needs to specify
whether an individual character from a string is to be referenced, whether an entire string is to be referenced,
or whether we are working with the collection of strings. Consider the following example:

{
char listNames[][256] =
{
"Thomas",
"Edwin",
"Ricks"
}s
cout << listNames[@][0@] << endl; // the letter ‘T’
cout << listNames[9] << endl; // the string “Thomas”
cout << listNames << endl; // ERROR: COUT can’t accept an array of
} // strings. Write a loop!

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.0 Array Syntax | Page 219

Example 3.0 - Array Copy

It is possible to copy the data from one integer variable into another with a simple assignment operator.
This is not true with an array. To perform this task, a loop is required. This example will demonstrate
how to copy an array of integers.

el Write a program to prompt the user for a list of ten numbers. After the user has entered the values,
8! copy the values into another array and display the list.
o
3

It is not possible to perform the array copy with a simple assignment statement:

arrayDestination = arraySource; // this will not work

Instead, it is necessary to write a loop and copy the items one at a time.

{
g const int SIZE = 10; // we can use SIZE to declare because it is a CONST
E- int listDestination[SIZE]; // copy data to here. It starts uninitialized
= int listSource[SIZE] = // copy data from here
g {
6,8, 2,6,1,7,2,9,0

s

// a FOR loop is required to copy the data from one array to another.

for (int i = @; i < SIZE; i++)

listDestination[i] = listSource[i];
}

9 As a challenge, modify the program to copy an array of floating point numbers rather than an array of
Nl integers. Make sure you format the output to one or two decimals of accuracy.
o
Nl As an additional challenge, try to display the list backwards.
o
"<l The complete solution is available at 3-0-arrayCopy.cpp or: XYy
o
E /home/cs124/examples/3-0-arrayCopy.cpp
(7]
(@)

Page 220 | 3.0 Array Syntax | Unit 3: Pointers & Arrays | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-0-arrayCopy.html
https://video.byui.edu/media/3.0+-+Array+Copy/0_flhfrkac/18442462

Arr dys as Parameters

Passing arrays as parameters is quite different than passing other data types. The reason for this is a bit subtle.
When passing an integer, a copy of the value is sent to the callee. When passing an array, however, the data
itself does not move. Instead, only the address of the data is sent. This means, in effect, that passing arrays is
always pass-by-reference.

Passing strings
As mentioned previously, strings are just arrays. Thus, passing a string as a parameter is the same as passing

an array as a parameter. For any parameter-passing scenario, there are two parts: the callee (the function being
called) and the caller (the function initiating the function call).

The parameter declaration in the callee looks much like the declaration of an array. There is one exception
however: there is no number inside the square brackets. The reason for this may seem a bit counter-intuitive
at first: the callee does not know the size of the array. Consider the following example:

/**

* DISPLAY NAME

* Display a user’s name on the screen
**/

void displayName(char lastName[], bool isMale) // no number inside the brackets!

if (isMale)
cout << "Brother ";

else

cout << "Sister ";
cout << lastName; // treated like any other string
return;

}

In this example, the first parameter (lastName) is a string. For the rest of the function, we can treat lastName
like any local variable in the function.

Notice that we use the parameter mechanism to pass data back to the caller rather than using the return
mechanism. We do this because array parameters behave like pass-by-reference variables.

[R K KRR KRR KR Kk SRR R ok

* GET NAME
* Prompt the user for this last name
stk sk skok koo stk ok skok skokokskok skl sk skl sk sk skl sk skok sk sk ok sk skokok ok /
void getName(char lastName[]) // Even though this is pass-by-reference
{ // there is no & in the parameter
cout << "What is your last name? ";
cin >> lastName;
return; // Do not use the return mechanism
} // for passing arrays

Observe how both the input parameter (demonstrated in the function displayName()) and the output
parameter (demonstrated in the function getName()) pass the same way.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.0 Array Syntax | Page 221

Calling a function accepting an array as a parameter is accomplished by passing the entire array name. Observe
how we do not use square brackets when passing the string.

/***

* MAIN

* Driver function for displayName and getName
***/

int main()

{
char name[256]; // this buffer is 256 characters
getName(name); // no []s used when passing arrays
displayName(name, true /*isMale*/); // again, no []s
displayName("Smith", false /*isMale*/); // we can also pass a string literal.

// this buffer is not 256 chars!

return 0;

}

The complete program for this example is available on 3-0-passingString.cpp:

/home/cs124/examples/3-0-passingString.cpp

When calling a function with an array, do not use the square brackets ([]s). If you do, you will be sending
only one element of the array (a char in this case). Observe how we can pass either a string variable (name) or
a string literal ("smith"). In the former case, the buffer is 256 characters. In the latter case, the buffer is much
smaller. Therefore, the caller specifies the buffer size, not the callee. This is why the callee omits a number
inside the square brackets ([]s) in the parameter declaration.

Recall that we should only be passing parameters by-reference when we want the callee to
change the value. This gets a bit confusing because passing arrays as parameters is much like pass-by-
reference. How can we avoid this unnecessarily tight coupling? The answer is to use the const modifier.

The const modifier allows the programmer to say “This variable will never change.” When used in a
parameter, it is a guarantee that the function will not alter the data in the variable. It would therefore
be more correct to declare displayName() as follows:

void displayName(const char lastName[], bool isMale);

If the programmer made a mistake and actually tried to change the value in the function, the following
compiler error message would be displayed:

example.cpp: In function “void displayName(const char*, bool)”:
example.cpp:15: error: assignment of read-only location “* lastName”

Page 222 | 3.0 Array Syntax | Unit 3: Pointers & Arrays | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-0-passingString.html

Passing arrays

Passing arrays as parameters is much like passing strings with one major exception. While strings are
frequently (but not always!) 256 characters in length, the size of array buffers are difficult to predict. For this
reason, we almost always pass the size of an array along with the array itself:

/***

* FILL LIST

* Fill a list with the user input
**/

void filllList(float listGPAs[], int numGPAs)

{
cout << "Please enter " << numGPAs << " GPAs\n";
for (int iGPAs = @; iGPAs < numGPAs; iGPAs++)
{
cout << "\t#" << iGPAs + 1 << " : ";
cin >> 1istGPAs[iGPAs];
}
}

In this case, the function would not know the number of items in the list if the caller did not pass that value
as a parameter.

¥ = Sue’s Tips

ﬂ@[There are commonly three variables in the typical array loop: the array to be looped through,
the number of items in the array, and the counter itself. Each of these is related yet each fulfill
a different role. It is a good idea to choose variable names to emphasize the differences and
similarities:
e 1listGPA: The “list” prefix indicates it is an array, the “GPA” suffix indicates it pertains
to GPAs.
e numGPA: The “num” prefix indicates it is the number of items, the “GPA” suffix again
indicates what list it pertains to.
e iaPA: The “i” prefix indicates it is an incrementer (or iterator).

Using consistent and predictable names makes it easier to spot bugs.

Observe how the caller can then specify the size of the array and, by doing so, control the number of iterations
through the loop:

/**

* MAIN

* Driver program for filllList
**/

int main()

{
float listSmall[5];
float listBig[500];
fillList(listSmall, 5); // make sure the passed size equals the true size
fillList(listBig, 500); // this time, many more iterations will be performed
return 0;

}

A common mistake is to pass the wrong size of the list as a parameter. In the above example, it would be a
mistake to pass the number 10 for the size of 1istsmall because it is only 5 slots in size.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.0 Array Syntax | Page 223

Example 3.0 - Passing an Array

This example will demonstrate how to pass arrays of numbers as parameters. Included will be how to
pass an array as an input parameter (to be filled) and how to pass an array as an output parameter (to

be displayed).

Write a program to prompt the user for 4 prices in Euros, and display the dollar amount.

Please enter 4 prices in Euros

Price # 1: 1.00

Price # 2: 3.75

Price # 3: .17

Price # 4: 104.54
The prices in US dollars are:

$1.38

$5.17

$0.23

$144.04

wo[qoIJ oun(

The function to prompt the user for the prices is an output parameter. Notice how we do not use the
ambersand (&) when specifying an output parameter if the parameter is an array.

void getPrices(float prices[], int num)

{
cout << "Please enter " << num << " prices in Euros\n";
for (int i = 0; i < num; i++)
{
cout << "\tPrice # " << i+ 1 << ": ";
cin >> prices[i];
}
» }
= - - . . :
=@l When the parameter is input-only, it is a good idea to include the const modifier to the array parameter
g' declaration to indicate that the function will not modify any of the data.
void display(const float prices[], int num)
{
// configure the output for money
cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(2);
// display the prices
cout << "The prices in US dollars are:\n";
for (int i = @; i < num; i++)
cout << "\t$" << prices[i] << endl;
}

/home/cs124/examples/3-0-passingArray.cpp

@l As a challenge, modify the display() function so both the Euro and the Dollar amounts are displayed.
= L . .

Nl This will require you to make a copy of the price array so both arrays can be passed to the display
“9l function.

aQ

o

"<l The complete solution is available at 3-0-passingArray.cpp or: Ty

o

=

72}

o

Page 224 | 3.0 Array Syntax | Unit 3: Pointers & Arrays | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-0-passingArray.html
https://video.byui.edu/media/3.0+-+Passing+an+Array/0_6dbx2o3w/18442462

- &
= Sue’s Tips

.,
@
“‘L Always pass the size of the array as a parameter. The least problematic way to do this is to let

the compiler compute the number of elements. Consider the following code:

float listSmall[5];
cout << sizeof(listSmall) << endl; // sizeof(float) * 5 == 20
cout << sizeof(listSmall[@]) << endl; // sizeof(float) ==
cout << sizeof(listSmall) / sizeof(listSmall[@]) << endl;
// 20 / 4 == 5 NumElements!

Thus, it is very common to pass the size of a list using the following convention:

fillList(listSmall, sizeof(listSmall) / sizeof(listSmall[@]));

This expression is worth memorizing.

Passing an array of strings

Passing arrays of strings is a bit more complex than passing single strings. While the reason for the difterences
won’t become apparent until we learn about multi-dimensional arrays later in the semester (Chapter 4.0), the
syntax is as follows:

/***

* DISPLAY NAMES

* Display all the names in the passed list
**/

void displayNames(char names[][256], int num) // second [] has the size in it

{

for (int i = @; i < num; i++) // same as with other arrays
cout << names[i] << endl; // access each individual string

}

Observe that, like with simple strings, the first set of square brackets near the names variable is empty. The
second set, however, needs to include the size of each individual string. When we call this function, one does
not include the square brackets. This ensures the complete list of names is passed, not an individual name.

[K Ko KRR KRR KR Kk SRk kR ok

* MAIN

* Simple driver program for displayNames
**/
int main()

{
char fullName[3][256] =

"Thomas",

"Edwin",

"Ricks"
s
displayNames(fullName, 3);
return 0;

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.0 Array Syntax | Page 225

Example 3.0 - Array of Strings

This example will demonstrate how to pass an array of strings as a parameter.

In this final example, we will prompt the user for his five favorite scripture heroes and display the results
in a comma-separated list:

Who are your top five scripture heroes?

#1: Joseph
#2: Paul
#3: Esther
#4: Nephi
#5: Mary

Your five heroes are: Joseph, Paul, Esther, Nephi, Mary

wo[qoIJ ouwnq

The function to prompt the user for the strings. Observe how the double square-bracket notation is
used and the size of each buffer is in the brackets:

void getNames(char listNames[][256], int numNames)

{

cout << "Who are your top " << numNames << scripture heroes?\n";
// standard FOR loop

for (int iNames = ©; iNames < numNames; iNames++)

{

cout << "\t#" << iNames + 1 << ": ";
cin >> listNames[iNames]; // one element of an array of strings
} // is simply a string!
}

To call the function, we specify that the entire list of names is to be used by passing the names variable
without square brackets.

»»
=2
g
i
e
=)

int main()

{
// declare the array of strings
char names[5][256];

// prompt the user for the data
getNames(names, 5 /*numNames*/); // send the entire array of strings

// display the list of names
display(names, 5 /*numNames*/);

return 0;

As a challenge, modify the program so that each name only can contain 32 characters rather than 256.
Also, change the list size to 10 items instead of five. How much code needs to change to make this
work?

The complete solution is available at 3-0-arrayStrings.cpp or:

/home/cs124/examples/3-0-arrayStrings.cpp

osTy 395 faSudrreyDn

Page 226 | 3.0 Array Syntax | Unit 3: Pointers & Arrays | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-0-arrayStrings.html
https://video.byui.edu/media/3.0+-+Arrays+of+Strings/0_17cy788i/18442462

Passing Characters, Strings, and List of Strings
Consider the following functions:

void displaylListNames(const char names[][256], int num) // second [] has the size

{
for (int i = @; i < num; i++) // same as with other arrays
cout << "\t' << names[i] << endl; // access each individual string
}
void displayName(const char name[]) // no NUM variable, no value in the[]s
{
cout << "One single name: " << name << endl;
}
void displayLetter(char letter)
{
cout << "One single letter: " << letter << endl;
}

Given a list of names (fullName), we can call each of the above functions:

{
char fullName[3][256] =

"Thomas",
"Edwin",
"Ricks"

3

displayListNames(fullName, 3); // display all the members of fullName
displayName(fullName[2]); // display just the 3" string in the list
displayLetter(fullName[2][0]); // display first letter of 3"¢ name

}

Given a single string (word), we can call only displayName() and displayLetter():

{
char word[256] = "BYU-Idaho";
displayName(word); // pass a variable with the data “BYU-Idaho”
displayLetter(word[4]); // pass the letter ‘I’
displayName("Vikings"); // pass a string literal “Vikings”

}

Finally, given a single letter (1letter), we can call only displayLetter():

{
char letter = 'C’';
displayLetter(letter); // pass the variable ‘C’
displayLetter('K"); // pass the literal ‘K’
}

The complete solution is available at 3-0-passing.cpp or:

/home/cs124/examples/3-0-passing.cpp

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.0 Array Syntax | Page 227

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-0-passing.html

Problem 1

What is the output?

{
float nums[] = {1.9, 5.2, 7.6};

cout << nums[1] << endl;

Answer:

Please see page 218 for a hint.

Problem 2

What is the output?
{
int a[] = {2, 4, 6};
int b = 9;

for (int c = @; c < 3; c++)
b += a[c];

cout << b << endl;

Answer:

Please see page 218 for a hint.

Problem 3

What is the output?

{
char letters[] = "FFFFFFDCBAA";

int number = 87;

cout << letters[number / 10]
<< endl;

Answer:

Please see page 219 for a hint.

Page 228 | 3.0 Array Syntax | Unit 3: Pointers & Arrays | Procedural Programming in C++

Problem 4

What is the output?
{
int one[] = {6, 2, 1, 5};
int two[] = {3, 9, 9, 7, 12};

for (int 1 = 0; i < 2; i++)
one[@] = one[i] * two[i];

cout << one[@] << endl;

Answer:

Please see page 218 for a hint.

Problem 5

What is the size of the following variables?

char a;
cout << sizeof(a) << endl;

char b[10];
cout << sizeof(b) << endl;

cout << sizeof(b[@]) << endl;

int c;
cout << sizeof(c) << endl;

int d[20];
cout << sizeof(d) << endl;

cout << sizeof(d[1]) << endl;

Problem 6

Write the code to put the numbers 1-10 in an array and display the array backwards:
Answer:

Please see page 36 for a hint.

Please see page 220 for a hint.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.0 Array Syntax | Page 229

Problem 7

Given the following function declaration:

void fill(int array[])
{

for (int i = 0; i < 10; i++)
array[i] = ©;

Answer:

Wirite the code to call the function with a variable called array.

Please see page 221 for a hint.

Problem 8

Given the following code:

{
float numbers[32];

display(numbers, 32);

Write a function prototype for display().
Answer:

Please see page 223 for a hint.

Problem 9

Average is 28.1

Answer:

Write the code to compute and display the average of the following numbers: 54.1, 18.6, 32.7, and 7:

Please see page 220 for a hint.

Page 230 | 3.0 Array Syntax | Unit 3: Pointers & Arrays |

Procedural Programming in C++

Problem 10, 11

Write a function to prompt the user for 10 names. The resulting array should be sent back to main().

Write a driver function main() to call the function and display the names on the screen.

Please see page 226 for a hint.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.0 Array Syntax | Page 231

This program will consist of three parts: getGrades(), averageGrades(), and a driver program.

getGrades

Write a function to prompt the user for ten grades and return the result back to main(). Note that any
variables declared in getGrades() will be destroyed when the function returns. This means that main() will
need to declare the array and pass it as a parameter to getGrades().

averageGrades

Write another function to find the average of the grades and return the answer. Of course, the grades array
will need to be passed as a parameter. The return value should be the average.

Driver Program

Finally, create main() that does the following:
e Has the grades array as a local variable
e (Calls getGrades()

e (Calls averageGrades()
e Displays the result

Please note that for this assignment, integers should be used throughout.

Example

The user input is underlined.
Grade 1: 90
Grade 2: 86
Grade 3: 95
Grade 4: 76
Grade 5: 92
Grade 6: 83
Grade 7: 100
Grade 8: 87
Grade 9: 91
Grade 10: @

Average Grade: 80%

Assignment
The test bed is available at:

testBed cs124/assign30@ assignment30.cpp

Don’t forget to submit your assignment with the name “Assignment 30” in the header.

Please see page 49 for a hint.

Page 232 | 3.0 Array Syntax | Unit 3: Pointers & Arrays | Procedural Programming in C++

Unit 3. Pointers & Arrays

3.1 Array Design

Sue was again enlisted by her mother to help her make sense of some stock data. While it is easy to determine
the starting price of the stock (the first item on the list) or the ending price of the stock (the last item on the
list), it is much more tedious to find the high and low values. Rather than laboriously search the list by hand,
Sue writes a program to find these values.

Objectives
By the end of this class, you will be able to:

e Search for a value in an array.
e Look up a value in an array.

Prerequisites

Before reading this section, please make sure you are able to:

e Declare an array to solve a problem (Chapter 3.0).

e Write a loop to traverse an array (Chapter 3.0).

e Predict the output of a code fragment containing an array (Chapter 3.0).
e Pass an array to a function (Chapter 3.0).

Overview

Arrays are used for a wide variety of tasks. The most common usage is when a collection of homogeneous
data is needed. Common examples include text (arrays of characters), lists of numbers (a set of grades), and
lists of more complex things (lists of addresses or students for example). In each case, individual members of
the list can be referenced by index. Problems involving this usage of arrays typically involve filling,
manipulating, and extracting data from a list.

Another use for an array would be to look up a value from a list. Consider selecting an item off a menu or
looking up the price on an order sheet. In both of these cases, equivalent logic can be written with IF/ELSE
statements. Storing the data in a table, however, often takes less memory, requires less code, and is much
casier to update. Problems involving this usage of arrays typically involve looking up data in tables.

Lists of Data

When solving problems involving lists of data, it is common to need to write a loop to visit every element of
the list. Most of these problems can be reduced to the following two questions:

1. How do you iterate through the list (usually using a standard FOR loop)?
2. What happens to each item on the list?

To illustrate this principle, three examples will be used: filling a list from a file of data, finding an item from
a list of unsorted data, and finding an item from a list of sorted data.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.1 Array Design | Page 233

Example 3.1 - Read From File

@l This example will demonstrate how to fill an array from a list of numbers in a file. This is a common
g function to write: fill an array from a given file name, an array to be filled, and the number of items in
SA the array.

e Fill the array data with the values in the following file:

% 1 3 6 2 9 3

o

3

In order to write a function to read this data into an array, it is necessary to answer the question “what
needs to happen to each item in the list?” The answer is: read it from the file (using fin >>) and save it
in the array(using fout <<). To accomplish this, our function needs to take three parameters: fileName
or the location from which we will be reading the data, data or where we will be placing the data, and
max or the size or capacity of the array data.

Observe how we need to send some information back to the caller, namely how many items we
successfully read. This is most conveniently done through the return type where 0 indicates a failure.
Consider the following function:

int readFile(const char fileName[], // use const because it will not change
int datal[], // the output of the function
int max) // capacity of data, it will not change
{
// open the file for reading
w» ifstream fin(fileName); // open the input stream to fileName
E% if (fin.fail()) // never forget the error checking
{
oy
o cout << "ERROR: Unable to read file "
= << fileName << endl; // display the filename we tried to read
return 0; // return the error condition: none read
}
// loop through the file, reading the elements one at a time
int numRead = 0; // initially none were read
while (numRead < max && // don't read more than the list holds
fin >> data[numRead]) // read and check for errors
numRead++; // increment the index by one

// close the file and return
fin.close(); // never forget to close the file
return numRead; // report the number successfully read

}

Observe how we make sure to check that we are not putting more items in the list than there is room.
If the list holds 10 but the file has 100 items, we should still only read 10.

We did not traverse the array using the standard FOR loop even though all three parts (initialization,
condition, and increment) are present. As a challenge, try to modity the above function so a FOR loop
is used to read the data from the file instead of a WHILE loop. Which solution is best?

The complete solution is available at 3-1-readFile.cpp or: T

/home/cs124/examples/3-1-readFile.cpp

osTy 395 faSudrreyD

Page 234 | 3.1 ArrayDesign | Unit 3: Pointers & Arrays | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-1-readFile.html
https://video.byui.edu/media/3.1+-+Read+from+File/0_0eitqhwz/18442462

oun(

w[qoIJ

oS

uonn

A8uareyn

OS[Y 999

Example 3.1 - Searching an Unsorted List

Another common array problem is to find a given item in an unsorted list. In this case, the ordering of
the list is completely random (as unsorted lists are) so it is necessary to visit every item in the list.

Write a function to determine if a given search value is present in a list of integers:

bool linearSearch(const int numbers[], int size, int search);

If the value search is present in numbers, return true, otherwise, return false.

The first step to solving this problem is to answer the question “what needs to happen to each item in
the list?” The answer is: compare it against the sought-after item. This will be accomplished by iterating
through the array of numbers, comparing each entry against the search value.

bool linearSearch(const int numbers[], // the list to be searched
int size, // how many items are in the list
int search) // the term being searched for
{
// walk through every element in the list
for (int 1 = @; i < size; i++) // standard FOR loop for an array
if (search == numbers[i]) // compare each against the search item
return true; // if found, then leave with true

// not found if we reached the end
return false;

}

Observe how the larger the list (size), the longer it will take. We call this a “linear search” because the
cost of the search is directly proportional to the size of the list.

Finding if an item exists in a list is essentially the same problem as finding the largest (or smallest) item
in a list. As a challenge, modify the above function to return the largest number:

int findLargestValue(const int numbers[], int size);

To accomplish this, declare a variable that contains the largest value currently found. Each item is
compared against this value. If the largest number currently found is smaller than the current item being
compared, then update the value with the current item. After every item in the list has been compared,
the value of the largest is returned.

The complete solution is available at 3-1-linearSearch.cpp or: X

/home/cs124/examples/3-1-1linearSearch.cpp

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.1 Array Design | Page 235

Unit 3

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-1-linearSearch.html
https://video.byui.edu/media/3.1+-+Searching+an+Unsorted+List/0_7i1cio00/18442462

Example 3.1 - Searching a Sorted List

@M It turns out that people rarely perform linear searches. Imagine how long it would take to look up a
e

=gl word in the dictionary! This example will demonstrate how to do a binary search.

O

=B Write a function to determine if a given search value is present in a list of integers:

]

8- bool binarySearch(const int numbers[], int size, int search);

P—

)

=Bl 1f the value search is present in numbers, return true, otherwise, return false.

The binary search algorithm works much like searching for a hymn in the hymnal:

1.
2.

o

Start in the middle (iMiddle) by opening the hymnal to the center of the book.

It the hymn number is greater, then you can rule out the first half of the book. Thus the first
possible page (iFirst) it could be on is the middle (imiddle), the last is the end (iLast).

If the hymn number is smaller then you can rule out the second half of the book.

Repeat steps 1-3. With each iteration, we either find the hymn or rule out half of the remaining
pages. Thus iFirst and iLast get closer and closer together. If iFirst and iLast are the same,
then our hymn is not present and we quit the search.

iFirst iMiddle iLast

1

1

1

1 3 5 7 7 8 9 11 | 13
<l Observe how the question “what needs to happen to each item in the list?” is answered with “decide if
—gll we should focus on the top half or bottom half of the list.”
g.
= bool binarySearch(const int numbers[], int size, int search)
{
int iFirst = 0; // iFirst and ilLast represent the range
int ilLast = size - 1; // of possible values: the whole list
while (iLast >= iFirst) // as long as the range is not empty
{
int iMiddle = (iLast + iFirst) / 2; // find the center (step (1) above)
if (numbers[iMiddle] == search) // if we found it, then stop
return true;
else if (numbers[iMiddle] > search) // if middle is bigger, focus on the
iLast = iMiddle - 1; // beginning of the list (step (2))
else // otherwise (smaller), focus on the
iFirst = iMiddle + 1; // end of the list (step (3))
} // continue (step (4))
// only got here if we didn’t find it
return false; // failure
}
"<l The complete solution is available at 3-1-binarySearch.cpp or: (15
(¢)
E: /home/cs124/examples/3-1-binarySearch.cpp
[72]
o
Page 236 | 3.1 Array Design | Unit 3: Pointers & Arrays | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-1-binarySearch.html
https://video.byui.edu/media/3.1+-+Searching+a+Sorted+List/0_uqlbn1eq/18442462

Table Lookup

Arrays are also a very useful tool in solving problems involving looking up data from a table or a list of values.
This class of problems is typically solved in two steps:

1. Create a table of the data to be referenced.
2. Write code to extract the data from the table.

This is best illustrated with an example. Consider the following code to convert a number grade into a letter

grade:

/************************************
* COMPUTE LETTER GRADE
* Compute the letter grade from the

* passed number grade
************************************/

char computelLetterGrade(int numberGrade)

{

assert(numberGrade >= © && numberGrade <= 100);

// table to be referenced

char grades[] =

{ //0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E', ', 'F', 'FE', 'F', 'F', 'D', 'C', 'B', 'A', 'A'

s

assert(numberGrade / 10 >= 0);

assert(numberGrade / 10 < sizeof(grades) / sizeof(grades[9]);

return grades[numberGrade / 10]; // Divide will give us the 10’s digit
}

When using this technique, it is important to spend extra time and thought on the representation of the data
in the table. The goal is to represent the data as clearly (read: error-free) as possible and to make it as easy to
extract the data as possible. This programming technique is called data-driven design.

Observe how we do not have a FOR loop to iterate through the list. Since we were careful about how the list
was ordered (where the index of the grades array correspond to the first 10’s digit of the numberGrade array),
we can look up the letter grade directly.

Finally, while it may seem excessive to have three asserts in a function containing only two statements, these
asserts go a long way to find bugs and prevent unpredictable behavior.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.1 Array Design | Page 237

Example 3.1 - Tax Bracket

wM This example will demonstrate a table-loopup design for arrays. In this case, the tax table will be put in
g a series of arrays.
e}
Consider the following tax table:
If taxable But not over-- | The tax is:
income is over--
E $0 $15,100 10% of the amount over $0
S $15,100 $61,300 $1,510.00 plus 15% of the amount over 15,100
g $61,300 $123,700 $8,440.00 plus 25% of the amount over 61,300
$123,700 $188,450 $24,040.00 plus 28% of the amount over 123,700
$188,450 $336,550 $42,170.00 plus 33% of the amount over 188,450
$336,550 no limit $91,043.00 plus 35% of the amount over 336,550

Compute a user’s tax bracket based on his income.

The first part of the solution is to create three arrays representing the lower part of the tax bracket, the
upper part of the tax bracket, and the taxation rate. The second part is to loop through the brackets,
seeing if the user’s income falls withing the upper and lower bounds. If it does, the corresponding tax
rate is returned.

int computeTaxBracket(int income)

{
int lowerRange[] = // the 1st column of the tax table
{ // 10% 15% 25% 28% 33% 35%
0, 15100, 61300, 123700, 188450, 336550
» }s
<) int upperRange[] = // the 2nd column
(=1 { // 10% 15% 25% 28% 33% 35%
g- 15100, 61300, 123700, 188450, 339550, 999999999
= s
int bracket[] // the bracket
{
10, 15, 25, 28, 33, 35
s
for (int i = 0; i < 6; i++) // the index for the three arrays
if (lowerRange[i] <= income && income <= upperRange[i])
return bracket[i];
return -1; // not in range (negative income?)!
}

As a challenge, modify this function to compute the actual income. This will require a fourth array: the
fixed amount. See if you can put your function in Project 1 and get it to pass testBed.

The complete solution is available at 3-1-computeTaxBracket.cpp or: Ty
/home/cs124/examples/3-1-computeTaxBracket.cpp %

osTy 395 faSudqreyD

Page 238 | 3.1 Array Design | Unit 3: Pointers & Arrays | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-1-computeTaxBracket.html
https://video.byui.edu/media/3.1+-+Tax+Bracket/0_4xlstsqo/18442462

Problem 1

What is the output of the following code?

{
int a[4];

for (int 1 = 0; i < 4; i++)
a[i] = 1i;

for (int j = 3; j >= 0; j--)
cout << a[j];

cout << endl;

Answer:

Please see page 218 for a hint.

Problem 2

What is the output of the following code?

{
char a[] = {'t", 'm", 'q'};
char b[] = {'a', 'z', 'b'};
char c[3];
for (int i = 0; i < 3; i++)
if (a[i] > b[i])
c[i] = a[il;
else
c[i] = b[i];
for (int 1 = 0; i < 3; i++)
cout << c[i];
cout << endl;
}
Answer:

Please see page 237 for a hint.

Procedural Programming in C++

Unit 3: Pointers & Arrays

3.1 Array Design | Page 239

Problem 3

Complete the code to count the number of even and odd numbers:

void displayEvenOdd(const int values[],

int num)
{
//determine even/odd
int numEvenOdd[2] = {0, 0};
// display
cout << "Number even: "
<< numEvenOdd[@] << endl;
cout << "Number odd: "
<< numEvenOdd[1] << endl;
¥

Please see page 237 for a hint.

Problem 4

Fibonacci is a sequence of numbers where each number is the sum of the previous two:
0 ifn=20
F(n)= {1 ifn=1
Fn—1)+Fn-2) ifn>1

Write the code to complete the Fibonacci sequence and store the results in an array.

void fibonacci(int array[], int num)

{

Please see page 237 for a hint.

Page 240 | 3.1 Array Design | Unit 3: Pointers & Arrays | Procedural Programming in C++

Start with Assignment 3.0 and modify the function averageGrades() so that it does not take into account
grades with the value -1. In this case, -1 indicates the assignment was not completed yet so it should not
factor in the average.

Examples

Two examples... The user input is underlined.

Example 1
Grade 1: 90
Grade 2: 86
Grade 3: 95
Grade 4: 76
Grade 5: 92
Grade 6: 83
Grade 7: 100
Grade 8: 87
Grade 9: 91
Grade 10: -1

Average G ade: 88%

Notice how the -1 for the 10™ grade is not factored into the average.

Example 2
Grade 1: -1
Grade 2: -1
Grade 3: -1
Grade 4: -1
Grade 5: -1
Grade 6: -1
Grade 7: -1
Grade 8: -1
Grade 9: -1
Grade 10: -1
Average Grade: ---%

Since all of the grades are -1, there is no average. You will need to handle this condition.

Assignment
The test bed is available at:

testBed cs124/assign31 assignment3l.cpp

Don’t forget to submit your assignment with the name “Assignment 31” in the header.

Please see page 235 for a bint.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.1 Array Design | Page 241

Unit 3. Pointers & Arrays

3.2 Strings

Sue has just received an e-mail from her Grandma Ruth. Grandma, unfortunately, is new to computers (and
typing for that matter) and has written the entire message using only capital characters. This is very difficult
to read! Rather than suffer through the entire message, she writes a program to convert the all-caps text to
sentence case.

Objectives
By the end of this class, you will be able to:

e Understand the role the null character plays in string definitions.
e Write a loop to traverse a string.

Prerequisites

Before reading this section, please make sure you are able to:

e Declare an array to solve a problem (Chapter 3.0).

e Write a loop to traverse an array (Chapter 3.0).

e Predict the output of a code fragment containing an array (Chapter 3.0).
e Pass an array to a function (Chapter 3.0).

Overview

While we have been using text (char text[256];) the entire semester, we have yet to discuss how it works.
Through this chapter, we will learn that strings have a little secret: they are just arrays. Specifically, they are
arrays of characters with a null-character at the end.

{
char text[] =
{
Cr, ST, o, 1Y, 2, 'ar, e
s
cout << text << endl;
1

One common task to perform on strings is to write a loop to traverse them. Consider the following loop
prompting the user for text and displaying it one letter at a time on the screen:

{
char text[256]; // strings are arrays of characters
cout << "Enter text: "; // using the double quotes creates a string literal
cin >> text; // CIN puts the null-character at the end of strings
for (int i = 0; text[i]; i++) // almost our second standard FOR loop
cout << text[i] << endl; // we can access strings one character at a time
}

This chapter will discuss why strings are defined as arrays of characters with a null-character, how to declare
a string and pass one to a function, and how to traverse a string using a FOR loop.

Page 242 | 3.2 Swings | Unit 3: Pointers & Arrays | Procedural Programming in C++

Implementation of Strings

An integer is a singular value that can always fit into a single 4-byte block of memory. Text, however, is
tundamentally different. Text can be any length, from a few letters to a complete novel. Because text is an
arbitrary length, it cannot be stuck into a single location of memory as a number can. It is therefore necessary
to use a different data representation: an array.

Text is fundamentally a one-dimensional construct. Each letter in a book can be uniquely addressed from its
offset (index) from the beginning of the manuscript. For this reason, text is fundamentally an array of
characters. We call these arrays of characters “strings” because they are “strings of characters” somewhat like
a collection of characters attached by a string.

[xln] [efnef Jojefefefnfnfefnfef[|-]

Because text can be a wide variety of lengths, it is necessary to have some indicator to designate its size. There
are two fundamental strategies: keep an integral variable to specify the length, or specity an end-of-string
marker. The first method is called Pascal-strings because the programming language Pascal uses it as the
default string type. This method specities that the first character of the string is the length:

[olefs] [a]z2]4]

The second method, called c-strings, puts an end-of-string marker. This marker is called the null-character:

‘c‘s‘ ‘1‘2‘4‘nu11‘

While either design is viable, c-strings are used exclusively in C++ and are the dominant design in
programming languages today. The main reason for this is that each slot in a character array is, well, a
character. This means that the maximum value that can be put in a character slot is 255. Thus, the maximum
length of a Pascal-string is 255 characters. C-strings do not have this limitation; they can be any length.

Null-character

The null-character (*\e") is a special character used to designate the end of a c-string. We can assign the null-
character to any char variable:

{

char nullCharacter = '\0'; // single character assigned a null

char text[256]; // text is just an array of characters

text[0] = '\@'; // putting the null at the beginning signifies
} // an empty string

The value of the null-character is @ on the ASCII Table:
assert('\0' == 0);

There is a special reason why the null-character was given the first slot on the ASCII table: it is the only
character that equates to false when cast to a bool. In other words:

assert('\@' == false);

Since zero is the only integer mapping to false, we can assume that the null-character is the only false
character in the ASCII table.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.2 Strings | Page 243

C-Strings
All strings are c-strings by default in C++. To illustrate, consider the following code:

cout << "Hello world" << endl;

One may think that this string uses eleven bytes of memory (the space character is also a character). However,
it actually takes twelve:

Twle 12 o] [w]o]r]2]afmy
We can verify this with the following code:

cout << sizeof("Hello world") << endl;

The output, of course, will be 12.

String Syntax

In all ways, we can treat strings as simple arrays. There are two characteristics of strings, however, which
make them special. The first characteristic is the existence of the null-character. While all strings are character
arrays, not all character arrays are strings. In other words, an array of letter grades for a class will probably

not be a string because there is no null-character. The existence of the null eliminates the need to pass a length
parameter when calling a function. However, we will still probably want to pass a buffer size variable.

The second characteristic is the double-quotes notation. Consider the following two strings with equivalent
declarations:

{
char textl[] =
{
'‘'ct, 's', " tyotaty, '2', '4', '\e' // the hard way. Don’t do this!
s
char text2[] = "CS 124"; // ah, much better...
}

Clearly the double-quote notation greatly simplifies the declaration of strings. Whenever we see these double-
quotes, however, we must always remember the existence of the hidden null-character.

Declaring a string

The rules for declaring a string are very similar to those of declaring an array:

Declaration In memo Description

None of the slots are

char text[10]; ? ? ? ? ? ? ? ? ? ? e
[1e]; nitialized
Charc;ceﬁﬂ] = T 1212 e The initialized size is the
? same as the declared size
Chafc‘;e:;ﬂ@] = T 1212 he he e he The first 7 are initialized,
? the balance are filled with o
Cha: text [.]. = Declared to exactly the size
CS 124"; c|Ss 1 2 (4 \o 6
necessary to fit the text

Page 244 | 3.2 Stings | Unit 3: Pointers & Arrays | Procedural Programming in C++

A common mistake when declaring a string is to fail to leave space for the null character.
I Remember that the size of the declared string must be one greater than the maximum number

7

of characters that could possibly be in the string.

Passing a string

Since strings are just arrays, exactly the same rules apply to them as they apply to arrays. This means that they
can always be treated like pass-by-reference parameters. Consider the following function:

/*************************************

* GET NAME

* Prompt the user for his first name
*************************************/

void getName(char name[])

{

cout << "What is your first name? ";
cin >> name;

}

Observe how there is no return statement or ampersand (&) on the name parameter. Because we are passing
an array, we still get to fill the value. Now, consider the following code to call this function:

{
getName("String literal"); // ERROR! There is no variable passed here!
char name[256];
getName(name); // this works, a variable was passed

}

What went wrong? The function asked for an array of characters and the caller provided it! The answer to
this conundrum is a bit subtle.

A string literal (such as "String literal" above) refers to data in the read-only part of memory. This data is
not associated with any variable and cannot be changed. The data-type is therefore not an “array of characters,”
but rather a “constant array of characters.” In other words, it cannot be changed.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.2 Strings | Page 245

When authoring a function where the input text is treated as a read-only value, it is very important to add a
const prefix. This prefix enables the caller of the function to pass a string literal instead of a string variable:

/************************************

* Determine if a given file exists
***********************************/

bool checkFile(const char fileName[]) // CONST modifier allows caller to
{ // pass a literal
ifstream fin(fileName);

if (fin.fail())
return false;

fin.close();
return true;

}

Now, due to the const modifier, either of the following is valid:

{
char fileName[] = "data.txt"; // string variable that is read/write
checkFile(fileName); // the CONST modifier has no effect here
checkFile("data.txt"); // this would be a compile error without
} // the CONST modifier in checkFile()

Comparing Strings

Recall that strings are arrays of characters terminated with a null character. Consider two arrays of integers.
The only way to compare if two lists of numbers are the same is to compare the individual members.

{
int 1listi[] = { 4, 8, 12 };
int 1ist2[] = { 3, 6, 9 };
if (listl == list2) // this compares the location of the
cout << "Same!"; // two lists in memory. It does _NOT_
else // compare the contents of the lists!
cout << "Different!";
}

Instead, a loop is required:

{
int 1listi[] = { 4, 8, 12 };
int 1ist2[] = { 3, 6, 9 };
bool same = true;
for (int 1 = 0; i < 3; i++) // we must go through each item in the
if (lista[i] != 1list2[i]) // two lists to see if they are the same.
same = false; // There is no other way!
}

The only way to see if the lists are the same is to write a loop. Similarly, c-strings cannot be compared with a
single == operator. To compare two strings, it is necessary to write a loop to traverse the strings!

{
char textl1[256] = "Computer Science";
char text2[256] = "Electrical Engineering";
if (textl == text2) // this will _NOT_ compare
cout << "Same!" // the contents of the two
else // strings. It will only
cout << "Different!"; // compare the addresses!
}

Page 246 | 3.2 Strings | Unit 3: Pointers & Arrays | Procedural Programming in C++

Traversing a String

Strings are just arrays of characters where the end is marked with the null character (*\e'). This means we
can use a FOR loop to walk through a string much the same way we do with an integer array. The only
difference is how we know we have reached the end of the array. With arrays of numbers, we typically need
to pass another parameter (ex: numtlements) to tell us when we are at the end:

{

for (int i = @; i < numElements; i++)
cout << array[i] << endl;

¥

So, how big is the string? Consider the following string:

char name[] = "CS 124";
This corresponds to the following layout in memory:

number of elements

A
v

number of characters

A
A

) C T T S))) 1 1)) 2 T) 4)) \9 T
() 1 2 3 4 5 6
Iindex of first index of IastI

From here, we have the following relationships:

Amount of memory used sizeof(name)

Number of elements in the array sizeof(name) / sizeof(name[0])
Number of characters in the string (minus null) ~ (sizeof(name) / sizeof(namef[e]) - 1

IndeX Ofthe last 1t€m (SizeO'F(name) / sizeof(name[@]) -2

Therefore, to walk through an array backwards, you will need:

{
char name[] = "CS 124";
for (int i = (sizeof(name) / sizeof(name[@]) - 2); i >= @; i--)
cout << name[i] << endl;
}

It is important to remember that this only works when the size of the buffer is the same as the size of the
string. This is not commonly the case!

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.2 Strings | Page 247

Traversing using the null-character

With strings, we do not typically have a variable indicating the length of the string. Instead, we look for the
null character:

{
for (int i = 0; text[i] != '\@'; i++)
cout << text[i];

}

In this case, we are going to keep iterating until the null-character (*\e") is encountered:

] 1 2 3 4 5 6
C S 1 2 4 | \o

Note that the null character (*\e") has the ASCII value of zero. This is convenient because, when it is casted
to a bool, it is the only false value in the ASCII table. Therefore, we can loop through a string with the
tollowing code:

{
for (int i = @; text[i]; i++)
cout << text[i];

}

Observe how the condition in the FOR loop checks if the i™ character in the string is true or, in other words,
not the null-character.

] 1 2 3 4 5 6
C S 1 2 4 | \o

true | true | true | true | true | true [false
Consider the case where a string of text exists with spaces between the words. The problem is to convert the
spaces to underscores. In other words “Introduction to Software Development” becomes
“Introduction_to_Software_Development™:

{
char text[] = "Software Development"; // target string, any will do
for (int i = @; text[i]; i++) // loop through all items in the string
if (text[i] == "' ") // check each item against a space
text[i] = '_' // replace with an underscore
}

Page 248 | 3.2 Stings | Unit 3: Pointers & Arrays | Procedural Programming in C++

oun(

wo[qoIJ

oS

uonn

8udreyD

OS]y 999

Example 3.2 - Toggle Case

This example will demonstrate how to walk through a string, modifying each character one at a time.
This will be done by using an index to loop through the string until the null character is encountered.

Consider the scenario where the unfortunate user typed his entire e-mail message with the CAPS key
on. This will not only capitalize most characters, but it will un-capitalize the first letter of each sentence.
Write a function to correct this error.

Please enter your text: sOFTWARE eNGINEERING
Software Engineering

The function to convert the text will take a string as a parameter. Recall that arrays are always pass-by-
reference. This means that the parameter can serve both as the input and output of the function.

void convert(char text[]);

To traverse the string we will loop through each item with an index. Unlike with a standard array, we
need to use the condition text[i], not i < num:

for (int i = 0; text[i]; i++)

)

With this loop, we can look at every character in the string. Now we will need to determine if a character
is uppercase or lowercase. If the character is uppercase (isupper()), then we need to lowercase it
(tolower()). Otherwise, we need to uppercase it (toupper()). Note that the functions isupper(),
tolower(), and toupper() are in the cctype library

/***

* CONVERT

* Convert uppercase to lowercase and vice versa
**/

void convert(char text[])

{
for (int i = @; text[i]; i++) // loop through all the elements in text
if (isupper(text[i])) // check each element’s case
text[i] = tolower(text[i]); // convert to lower if it is upper
else
text[i] = toupper(text[i]); // otherwise convert to upper
}

As a challenge, try to modify the above program to count the number of uppercase letters in the input
stream. The prototype is:

int countUpper(const char text[]);

The complete solution is available at 3-2-toggleCase.cpp or: Yayr

/home/cs124/examples/3-2-toggleCase.cpp

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.2 Strings | Page 249

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-2-toggleCase.html
https://video.byui.edu/media/3.2+-+Toggle+Case/0_765n3toy/18442462

Example 3.2 - Sentence Case

Bl This example will demonstrate how to traverse a string, processing each character individually.
e}
o
Write a program to to perform a sentence-case conversion (where only the first letter of a sentence is
? capitalized) on an input string.
%? Please enter your input text: this IS sOME tExT. soME More TeXt.
E The sentence-case version of the input text is:

This is some text. Some more text.

Sentence-casing is the process of converting every character to lower-case except the first character in
the sentence. In other words, after a period, exclaimation point, or question mark is encountered, the
next letter needs to be uppercase. We capture this condition with the isNewSentence variable. If a
sentence-ending character is found, we set isNewSentence. This variable remains set until an alphabetic
character is found (isalpha()). In this case, we convert the letter to uppercase (toupper()) and set
isNewSentence to false. Otherwise, we set the letter to lowercase (tolower()).

void convert(char text[])

{
// the first letter of the input is the start of a sentence
bool isNewSentence = true;

// traverse the string
for (int i = @; text[i]; i++)

if (text[i] == '.' || text[i] == '!' || text[i] == '?")
isNewSentence = true;

// convert the first letter to uppercase
if (isNewSentence && isalpha(text[i]))
{

text[i] = toupper(text[i]);
isNewSentence = false;

}

// everything else to lowercase
else
text[i] = tolower(text[i]);

9_ As a challenge, modify the above program to handle Title Case the text. This is done by converting
Nl cvery character to lowercase except the first letter of the word. In other words, the first letter after every
C8l space is uppercase (as opposed to the first letter after every sentence-ending punctuation).

e

% The complete solution is available at 3-2-sentenceCase.cpp or:

E} /home/cs124/examples/3-2-sentenceCase.cpp

[72]

O

uonnjos
-

Page 250 | 3.2 Strings | Unit 3: Pointers & Arrays | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-2-sentenceCase.html
https://video.byui.edu/media/3.2+-+Traverse+through+a+c+string/0_6lp9poyv/18442462

Example 3.2 - Backwards String

w[qoiJ f| owndnQq

uonnjos

osTy 995 foSuarreyD

This example will demonstrate how to traverse a string backwards. This will require two loops through

the string: forward to find the end of the string, and reverse to display the string backwards.

Write a program to prompt the user for some text and display the text backwards:

Please enter some text: Software Engineering
The text backwards is "gnireenignE erawtfoS"

This function will consist of two parts: looping through the stirng to find the null-character, then
progressing backwards to display the contents of the string.

/**************************************

* DISPLAY BACKWARDS
* Display a string backwards

**************************************/

// first find the end of the string
int i = 0;
while (text[i])

i++;

// now go backwards
for (i--; i >=0; i--)
cout << text[i]

cout << endl;

void displayBackwards(const char text[])

{

// const for string literals

// needs to be a local variable

// as long as the null is not found

// keep going through the string

// back up one because we went too far
// display each individual character

}

When we are finished with the first loop (the forward moving one), the index will be referring to the
location of the null-character. We don’t want to display the null-character. Therefore, the first step of
the display loop is to back the index by one slot. From here, it displays each character including first
character of the string (with the o index).

Notice how a WHILE loop as used instead of a FOR loop in the first part of the function. As a challenge
try to re-write this loop as a standard FOR loop.

Again, notice how the second loop uses a FOR loop. Can you re-write it to use a WHILE loop instead?

The complete solution is available at 3-2-backwards.cpp or: e
/home/cs124/examples/3-2-backwards.cpp
Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.2 Strings | Page 251

Unit 3

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-2-backwards.html
https://video.byui.edu/media/3.2+-+Backwards+String/0_ifxt2xjy/18442462

Problem 1

How much memory is reserved by each of the following?

char text[8]

char text[] = "CS 124";

char text[10] = "124";

Please see page 244 for a hint.

Problem 2

What is the output of the following code?

{
char textl[] = "Text";
char text2[] = "Text";
if (textl == text2)
cout << "Equal";
else
cout << "Different"
}
Answer:

Please see pagre 246 for a hint.

Problem 3

What is the output of the following code?

char textl[] "this";
char text2[] = "that";

if (textl[@] == text2[0])
cout << "Equal";

else
cout << "Different";

Answer:

Please see page 246 for a hint.

Page 252 | 3.2Suings | Unit 3: Pointers & Arrays | Procedural Programming in C++

Problem 4

What is the output of the following code?

{
char text[5] = "42";

cout << text[4] << endl;

}
Answer:

Please see page 244 for a hint.

Problem 5

Which of the following is the correct prototype of a string passed to a function as a parameter?

void displayText(char text);
void displayText(char text []);
void displayText(text);

void displayText(char [] text);

Problem 6

Consider the following function prototype from #5:

Please see page 221 for a hint.

How would you call the function displayText();?
Answer:

Please see page 221 for a hint.

Problem 7

What is the output of the following code?

{
char text[] = "Hello";
for (int i = 0; i < 6; i++)
{
bool value = text[i];
cout << value;
}
cout << endl;
}
Answer:

Please see page 243 for a hint.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.2 Strings | Page 253

Traversing a string (or any other type of array for that matter) is a common programming task. This
assignment is the first part in a two-part series (the other is Assignment 3.5) where we will learn different
techniques for visiting every member of a string. Your assignment is to write the function countLetters()
then a driver program to test it.

countLetters

Write a function to return the number of letters in a string. This involves traversing the string using the
array notation (with an index as we have been doing all semester). We will re-write this function in
Assignment 3.5 to do the same thing using a pointer.

Driver Program

Create a main() that prompts the user for a line of input (using getline), calls countLetters(), and displays
the number of letters.

Note that since the first cin will leave the stream pointer on the newline character, you will need to use
cin.ignore() before getline() to properly fetch the section input. Take the first example below, the input
buffer will look like:

[z fw|wofzf Jsfuefrfe]t|w]

If the program inputs a character followed by a line, the code will look like this:

cin >> letter;
cin.getline(text, 256);

After the first cin, the input pointer will point to the ‘2. When the getline statement gets executed next, it
will accept all input up to the next newline character. Since the pointer is already on the newline character,
the result will be an empty string. To skip this newline character, we use cin.ignore().

Example

Two examples... The user input is underlined.

Example 1:

Enter a letter: z
Enter text: NoZ'sHere!
Number of 'z's: @

Example 2:

Enter a letter: a
Enter text: Brigham Young University - Idaho
Number of 'a's: 2

Assignment

The test bed is available at:

testBed cs124/assign32 assignment32.cpp

Don’t forget to submit your assignment with the name “Assignment 32” in the header.

Please see pages 40 and 249 for a hint.

Page 254 | 3.2Stings | Unit 3: Pointers & Arrays | Procedural Programming in C++

Unit 3. Pointers & Arrays

3.3 Pointers

Sue has just finished working on her résumé and begins the arduous task of posting the update. She puts one
copy on her LinkedIn page, another in her electronic portfolio, and another in the school’s career site.
Unfortunately, she also sent a number of copies to various prospective employers across the country. How
can she update them? Rather than sending copies everywhere, it would have been much easier if she just sent
links. This way, she would only have to update one location and, when people follow the link, they would
also get the most recent version.

Objectives
By the end of this class, you will be able to:

e Declare a pointer variable.
e Point to an existing variable in memory with a pointer variable.

Get the data out of a pointer.
e Pass a pointer to a function.

Prerequisites
Before reading this section, please make sure you are able to:
e Choose the best data type to represent your data (Chapter 1.2).

e Declare a variable (Chapter 1.2).
e Dass data into a function using both pass-by-value and pass-by-reference (Chapter 1.4).

Overview

Up to this point, our variables have been working exclusively with data. This is familiar and straight-forward:
if you want to make a copy of a value then use the assignment (=) operator. Often, however, it is more
convenient to work with addresses rather than with data. Consider Sue’s aforementioned scenario. If Sue would
have distributed the address of her résumé (link to the document) rather than the data (the physical résumé¢),
then the multiple-copy problem would not exist.

There are several reasons why working with addresses can be more convenient:

e One master copy: Often we want to keep one master copy of the data to avoid versioning and
update problems like Sue’s.

e Size: When working with large amounts of data (think arrays and strings), it can be expensive to
make a copy of the data every time a function is called. For this reason, arrays are always passed by
pointers to functions (more on that later).

e References & citations: Consider a lawyer citing a legal case. Rather than bringing the entire
case into the courtroom to make a point, he instead cites the relevant case. This way, any interested
party can go look at the original case if they are unsure of the details.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.3 Pointers | Page 255

We use addresses in everyday life. Other names include links, references, citations, and pointers. For
something to be considered a pointer, it must exhibit the following properties:

e Points: Each pointer must point to something. This could be data, a physical object, an idea, or
whatever.

e Mapping: There must be a unique mapping. In other words, for every pointer, there must be exactly
one object it is referring to.

e Addressing scheme: There must be some way to retrieve the data the pointer is referring to.

In a nutshell, a pointer is the address of data, rather than the data itself. For example, your debit card does
not actually hold any money in it (data), instead it holds your account number (pointer to data). Today we
will discuss the syntax of pointers and using pointers as parameters in functions. During the course of our
discussion, we will also reveal a little secret of arrays: they are accessed using pointers!

Syntax

Pointer syntax can be reduced to just three parts: declaring a pointer with the *, using the address-of operator
(&) to derive an address of a variable, and the dereference operator (*) to retrieve the data from a given address.

speed

Every pointer needs to point to something. In this case, the pointer will point to
speed.

int * pSpeed

The data-type of pointer is “pointer to an integer.” Notice that there are two
{ parts to the declaration: the type it is pointing to “int” and the fact that it is a
pointer “*”.

int speed = 65;
int * pSpeed;

|

Because the variable does not hold data but rather an address, it is helpful to
name it differently. In this case pSpeed means “pointer to speed.”

[pSpeed = &speed;

&speed

[cout << *pSpeed;
} To get the address of speed, we use the address-of operator “&”. Since the data-
type of speed is int, the data-type of &speed is “int *” or pointer to int.

*pSpeed

Use the dereference operator “*” to retrieve the data that pSpeed points to.

Declaring a pointer

When declaring a normal data variable, it is necessary to specify the data-type. This is required so the compiler
knows how to interpret the 1’s and 0’s in memory and how to evaluate expressions. Pointers are no different
in this regard, but there is one extra degree of complexity. Not only is it necessary to specify the data-type of
the data that is pointed to, it is also necessary to identify the fact that the variable is a pointer. Therefore,
pointer declaration has two parts: the data-type and the *.

<data-type> * <pointer variable>;
The following is an example of a pointer to a float:
float * pGPA;

The first part of the declaration is the data-type we are pointing to (float). This is important because, after
we dereference the pointer, the compiler needs to know what type of data we are working with.

Page 256 | 3.3 DPointers | Unit 3: Pointers & Arrays | Procedural Programming in C++

96[We need to remember to treat pointers differently than data variables because we need the
dereference operator (*) when accessing data. To help remember, always prefix a pointer
variable with a p. This will make it less likely to confuse a pointer variable with a regular data
variable.

Getting the address of a variable

Every variable in C++ resides in some memory location. With the address-of operator (&), it is possible to
query a variable for its address at any point in the program. The result is always an address, but the data-type
depends on the type of the data being queried. Consider the following example:

{
// a bun
int \
float v
bool v
char v

// a bun
int *
float *
bool *
char *

// assig
pInteger
pFloatin
pBoolean
pCharact

}

ch of normal data variables
aluelnteger; // integer
alueFloatingPoint; // floating point number
alueBoolean; // Boolean
alueCharacter; // character
ch of pointer variables
pInteger; // pointer to integer
pFloatingPoint; // pointer to a floating point number
pBoolean; // pointer to a Boolean value
pCharacter; // pointer to a character
nments
= &valuelnteger; // both sides of = are pointers to integers
gPoint = &valueFloatingPoint; // both sides are pointers to floats
= &valueBoolean; // both sides are pointers to Bools
er = &valueCharacter; // both sides are pointers to characters

In the first assignment (pInteger = &valueInteger), the data-type of valueInteger is int. When the address-of
operator is added to the expression, the data-type becomes “pointer to int.” The left-side of the assignment
is pInteger which is declared as a “pointer to an int.” Since both sides are the same data-type (pointer to an
int), then there is not a problem with the assignment. If we tried to assign &valueInteger to pFloatPoint, we
would get the following compile error:

example.cpp

: In function “int main()”:

example.cpp:20: error: cannot convert “int*” to “float*” in assignment

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.3 Pointers | Page 257

All pointers are the same size, regardless of what they point to. This size is the native size of
the computer. If, for example, you are working on a 32 bit computer, then a pointer will be four bytes
in size:

// only true for 32 bit computers

assert(sizeof(int);
) // all addresses are the same size

*)
assert(sizeof(char *) ==
However, if the computer was 64 bits, then the pointer would be eight bytes in size:

assert(sizeof(int *) == 8); // only true for 64 bit computers
assert(sizeof(char *) == 8); // again, what they point to does not matter

While this may seem counterintuitive, it is actually quite logical. The address to my college apartment
in GPS coordinates was exactly the same size as the address to a nearby football stadium. The addresses
were the same size, even though the thing they pointed to were not!

I

Retrieving the data from a pointer

We can always retrieve the data from a given address using the dereference operator (*). For this to be
accomplished the compiler must know the data-type of the location in memory and the address must be valid.
Since the data-type is part of the pointer declaration, the first part is not a problem. It is up to the programmer
to ensure the second constraint is met. In other words, the compiler ensures that a data variable is always
referring to a valid location in memory. However, with pointers, the programmer needs to set up the value.
Consider the following example:

{
int speed = 65; // the location in memory we will be pointing to
int * pSpeed; // currently uninitialized. Don’t dereference it!
pSpeed = &speed; // now it is initialized to the address of speed
cout << *pSpeed << endl; // need to use the * to get the data

}

It we removed the dereference operator (*) from the cout statement: cout << pSpeed << endl;, then we would
pass a “pointer to an integer” to cout. This would display not the value 65, but rather the location where that
value exists in memory:

ox7fff9d235d74

It we skipped the initialization step in the above code (pSpeed = &speed), then the variable pspeed would
remain un-initialized. Thus, when we dereference it, it would refer to a location in memory (segment) the
program does not own. This would cause a segmentation fault (a.k.a “crash”) at run-time:

Segmentation fault (core dumped)

Page 258 | 3.3 DPointers | Unit 3: Pointers & Arrays | Procedural Programming in C++

Example 3.3 - Variable vs. Pointer

This example will demonstrate the differences between working with pointers and working with
variables. Pointers do not hold data so they can only be said to share values with other variables.
Variables, on the other hand, make copies of values.

ownd(

In the following example, we will have a standard variable called account which stores my current
account balance. We will also have a pointer to my account called pAccountNumber. Observe how we add
the p’ prefix to pointer variables to remind us they are special. Finally, we will modify the account
balance both through manipulating the account variable and the pAccountNumber variable.

{

// Standard variable holding my account balance. I opened the account with
// birthday money from granny (I love granny!).
double account = 100.00;

// Visiting the ATM, I get a receipt of my current account balance ($100.00)
double receipt = account;

// Pointer variable not currently pointing to anything. I have just declared
// it, but it is still not initialized. We declare a pointer variable by

// specifying the data type we are pointing to and the special “*’ character
double * pAccountNumber;

// Now my account number refers to the variable account. We do this by
// getting the address of the account variable. This is done with the
// address-of operator ‘&’

pAccountNumber = &account;

oS

uonn

// From here I can either access the account variable directly..
account += 0.12; // interest from the bank

// .. or I can access it through the pAccountNumber pointer. In this case, I
// went to the ATM machine and added $20.00. Observe how I can access the
// data of a pointer with the dereference operator *’

*pAccountNumber += 20.00;

// Now I will display the differences
cout << "Receipt: $" << receipt << endl; // the old value: $100.00
cout << "Balance: $" << account << endl; // updated value: $120.12

}

The receipt is a standard variable, not changing to reflect the latest copy of the variable. My debit card
contains my account number, a pointer! Thus going to the ATM machine (dereferencing the account
number pointer) always gets me the latest copy of my account balance.

pAccountNumber

120.12 4+— 100.00

As a challenge, change the value receipt to reflect a modest “adjustment” to your account.

recipt = 1000000.00; // I wish this actually worked!

A8uareyn

Notice how it does not influence the value in the variable account. Only pointers can do that!

The complete solution is available at 3-3-variableVsPointer.cpp or:

/home/cs124/examples/3-3-variableVsPointer.cpp

OS[Y 92§

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.3 Pointers | Page 259

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-3-variableVsPointer.html

Example 3.3 - Pointer to Master Copy

This example will demonstrate how more than one pointer can refer to a single location in memory.

p p & ry
e

This will allow multiple variables to be able to make updates to a single value.

p p &
O
W Professor Bob keeps the “master copy” of everyone’s grades. He also encourages his students to keep
Ml track of their grades so they know how they are doing. Finally, the registrar needs to have access to the
ST- grades. To make sure that the various versions remain in sync, he distributes pointers instead of copies.
=Bl The student got an 86 for his grade. Later, the professor noticed a mistake and updates the grade to 89.
& & > the p p &

In this example, there are three variables: an integer representing the professor’s master copy of the
grade (gradeProf), a pointer representing the student’s ability to access the grade (pGradestudent), and
a pointer representing the registrar’s copy of the grades (pGradeRegistrar).

pGradeStudent | pGradeRegistrar
—

86

The code for this examples is:

{
// initial grade for the student
int gradeProf = 86; // start with a normal data variable

// two people have access
const int * pGradeStudent &gradeProf; // a const so student can’t change
const int * pGradeRegistrar = &gradeProf; // registrar can’t change it either

oS

e
g.
e
=)

// professor updates the grade.
gradeProf = 89;

// report the results

cout << *pGradeRegistrar
<< endl;

cout << *pGradeStudent
<< endl;

}

Observe how neither pGradeRegistrar nor pGradestudent actually contain a grade; they only contain the
address of the professor’s grade. Thus, when gradeprof changes to 89, they will reflect the new value
when *pGradeRegistrar and *pGradeStudent are dereferenced. This is one of the advantages of using
pointers: sharing.

You may notice how pGradeStudent and pGradeRegistrar both have the const prefix. This guarentees

@l that *pGradeStudent won’t inadvertently change gradeProf. As a challenge, try to change the value with
B‘ the following code:
=
9)
C!% *pGradeStudent = 99; // Yahoo! Easy ‘A’!
¢}
Now, remove the const prefix from the pGradestudent declaration. Does the compile error go away?
*<ll The complete solution is available at 3-3-pointerToMasterCopy.cpp or:
o
E /home/cs124/examples/3-3-pointerToMasterCopy.cpp
@
e}

Page 260 | 3.3 Pointers | Unit 3: Pointers & Arrays | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-3-pointerToMasterCopy.html

oun(

w[qoIJ

oS

uonn

8udreyD

OS]y 999

Example 3.3 - Point to the “Right” Data

the pointer will either refer to one variable or another, depending on a condition.

This example will demonstrate how to conditionally assign a pointer to the “right” data. In this case,

Imagine Sam and Sue are on a date and they are trying to figure out who should pay. They decide that
whoever has more money in their account should pay. They use that person’s debit card. Recall that the
debit card points to the person’s account. In other words, a debit card does not contain actual money.
Instead, it carries the account number or a pointer to the account:

We have two variables here (accountSam and accountSue). We will also have a pointer which will refer
to one of the accounts or the other depending on the current balance:

———¥»398.21

120.01

In this case, pAccount will point to Sue’s account because she happens to have more money today.

{

// start off with money in the accounts

float accountSam = 120.01;
float accountSue = 398.21;
float * pAccount;

// who will pay...
if (accountSam > accountSue)
pAccount = &accountSam;
else
pAccount = &accountSue;

// use the debit card to pay

float priceDinner = 21.65;
*pAccount -= priceDinner;
*pAccount -= priceDinner * 0.15;
// report

cout << accountSam << endl;
cout << accountSue << endl;

//
//
//

//
//

//
//

original account of Sam
Sue does a better job saving
uninitialized pointer

warning: do not try this on an actual date
the & gets the address of the account.
This is much like a debit card number

not an expensive dinner!
remove price of dinner from Sue’s account
don’t forget the tip

since pAccount points to accountSue,
only accountSue will have changed

Just before walking into the restaurant, Sam remembered that he has a saving account that his mother
told him was “only for a rainy day.” With Sue pulling out her debit card, the skies are definitely looking

cloudy!

float accountSamsMother = 562.09;

//

for emergency use only!

Modity the above program to make it work with a third account.

The complete solution is available at 3-3-pointerToRightData.cpp or:

/home/cs124/examples/3-3-pointerToRightData.cpp

Procedural Programming in C++

Unit 3: Pointers & Arrays | 3.3 Pointers |

Page 261

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-3-pointerToRightData.html

Pointers and functions

In the C programming language (the predecessor to C++), there is no pass-by-reference parameter passing
mechanism. As you might imagine, this is quite a handicap! How else can you return more than one variable
from a function if you cannot use pass-by-reference? It turns out, however, that this is no handicap at all. In
C, we use pass-by-pointer instead.

Passing a pointer as a parameter to a function enables the callee to have the same access to the value as the
caller. Any changes made to the dereferenced pointer are reflected in the caller’s value. Consider the following
example:

/************************************

* SET TWENTY

* Change the value to 20
************************************/

void setTwenty(int * pNumber) // pass-by-pointer
{

*pNumber = 20; // by changing the dereference value, we
} // change who pNumber points to: num

/************************************

* MAIN

* Simple driver program for setTwenty
***********************************/

int main()

{
// the value to be changed
int num = 10; // the value to be changed
int * pNum = # // get the address of num

// the change is made

setTwenty(pNum); // this could also be: setTwenty(&num);
// display the results

cout << num << endl; // num == 20 due to setTwenty()

return 0;

}

How does this work? Consider the following diagram:

____num | pNum | pNumber |

4_________
20 4

The variable num in main() starts at the value 1e. Also in main() is pNum which points to num. This means that
any change made to *pNum will be reflected in num. When the function setTwenty() is called, the parameter
pNumber is passed. This variable gets initialized with the same address that pNum sent. This means that both pNum
and pNumber contain the same address. Thus, any change made to *pNumber will be the same as making a change
to *pNum and num. Therefore, when we set *pNumber = 20 in setTwenty(), it is exactly the same thing as setting
num = 20 1IN main().

Page 262 | 3.3DPointers | Unit 3: Pointers & Arrays | Procedural Programming in C++

Pass-by-pointer

Up to this point in time, we have had two ways to pass a parameter: pass-by-value which makes a copy of
the variable so the callee can’t change it and pass-by-reference which links the variable from the callee to
that of the caller so the callee can change it. Now, with pointers, we can use pass-by-pointer. Pass-by-
pointer is sending a copy of the address of the caller’s variable to the callee. With this pointer, the callee can
then make a change that will be reflected in the caller’s data. To illustrate this point, consider the following
code:

/**

* FUNCTION

* Demonstrate pass by value, pass by reference, and pass by pointer
***/

void function(int value, int &reference, int * pointer)

cout << "value: " << value << " &value: " << &value << endl;
cout << "reference: " << reference << " &reference: " << &reference << endl;
cout << "*pointer: " << *pointer << " pointer: " << pointer << endl;

/**

* Just call a function. No big deal really.
***/
int main()
int number;
cout << "Please give me a number: ";
cin >> number;
cout << "number: << number
<< "\t&number: " << &number
<< endl << endl;

function(number /*by value */,
number /*by reference*/,
&number /*by pointer */);

return 0;

}

This program is available at 3-3-passByPointer.cpp or /home/cs124/example/3-3-passByPointer.cpp. The
output of this program is:

Please give me a number: 100

number: 100 &number: Ox7fff5fcbfO7c

value: 100 &value: Ox7fff5fcbf54c
reference: 100 &reference: Ox7fff5fcbfo7c
*pointer: 100 pointer: Ox7fff5fcbfO7c

Observe the value of number in main() (100) and the address in main (ex7fffsfcbfe7c). The first parameter is
pass-by-value. Here, we would expect the value to be copied which it is. Since pass-by-value creates a new
variable that is independent of the caller’s variable, we would expect that to be in a different address. Observe
how it is. The address of value is ox7fff5fcbfs4c, different than that of number.

The second parameter is pass-by-reference. The claim from Chapter 1.4 was that the caller’s variable and
the callee’s variable are linked. Now we can see that the linking is accomplished by making sure both refer to
the same location in memory. In other words, because they have the same address (ex7fffsfcbfezc), any
change made to reference should also change number.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.3 Pointers | Page 263

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-3-passByPointer.html

The final parameter is pass-by-pointer. A more accurate way of saying this is we are passing a pointer by
value (in other words, making a copy of the address). Since the address is duplicated in the pointer variable,
it follows that the value of *pointer should be the same as that of number.

The only difference between pass-by-pointer and pass-by-reference is notational. With pass-by-pointer, we
need to use the address-of operator (&) when passing the parameter and the dereference operator (*) when
accessing the value. With pass-by-reference, we use the ampersand (&) in the callee’s parameter. Aside from
these differences, they behave exactly the same. This is why the C programming language does not have pass-
by-reference: it doesn’t need it!

Pitfall: Changing pointers

As mentioned above, pass-by-pointer is the same thing as passing an address by value. This means that we
can change what the pointer is referring to in the function, but we cannot change the pointer itself. To
illustrate, consider the following function:

/************************************

* CHANGE POINTER

* Change what pointer is referring to
************************************/

float *changePointer(float * pointer, // pass-by-pointer. Initially &numl or pl
float &reference) // pass-by-reference. Tied to num2
{
*pointer = -1.0; // can change *pointer. This will then change
// numl in main().
pointer = &reference; // this function’s copy of pl will change. It
// will not change pl in main because the
// address was pass-by-value
return pointer; // send reference’s address (the same address
} // as num2) back to the caller.

/************************************

* MAIN

* Simple driver program for changePointer
***********************************/

int main()

{
float numl = 1.0;
float num2 = 2.0;
float *pl = &numil; // pl gets the address of numl
float *p2; // p2 is initially uninitialized
p2 = changePointer(pl, num2); // because a copy of pl is sent, it does not
// change. However, the copy’s value is
// returned which will change p2
assert(*pl == -1.0); // changed in changePointer() to -1.0
assert(pl == &numl); // not changed since it was initialized
assert(p2 == &num2); // assigned when function returned to the
// address of num2
return 0;
}

Notice how the values num1 and num2, as well as the the pointers p1 and p2 are in main() while pointer and
reference are in changePointer(). Since reference is pass-by-reference to num2, they share the same slot in
memory. The variable pointer, on the other hand, refers to num1 by pass-by-pointer.

-ﬂﬂ-— pointer num2/reference | p2 |

1.0 1.0 ¢&—mm

Page 264 | 3.3 DPointers | Unit 3: Pointers & Arrays | Procedural Programming in C++

It we want to change a pointer parameter in a function (not what it points to), we have three
options:

e Return the value and have the caller make the assignment (float * change();)

e Pass a pointer to a pointer. This is called a handle. (void change(float ** handle);)

e Pass the pointer by reference. (void change(float * &pointer);)

Arrays are pass-by-pointer

As you may recall, arrays are pointers. Specifically, the array variable points to the first item in the range of
memory locations. It thus follows that passing an array as a parameter should be pass-by-pointer. In fact, it
is. This is why we said in Chapter 3.0 that passing an array is /ike pass-by-reference. The reason is that it is
actually pass-by-pointer. Consider the following example:

/***************************

* INITIALIZE ARRAY
* Set the values of an array

* to zero
****************************/

void initializeArray(int * array, // we could say int array[] instead, it
int size) // means basically the same thing
{
for (int 1 = @; i < size; i++) // standard array loop
array[i] = o; // use the [] notation even though we
} // declared it as a pointer

/***************************

* MAIN

* Simple driver program
***************************/

int main()

{
const int SIZE = 10; // const variables are ALL_CAPS
int 1ist[SIZE]; // can be declared as a CONST
assert(SIZE == sizeof(list) / sizeof(*1list));// *list is the same as list[Q]
// call it the normal way
initializeArray(list, SIZE); // call the function the normal way
// call it with a pointer
int *pList = list; // list is a pointer so this is OK
initializeArray(pList, SIZE); // exactly the same as the first time

// we called initializeArray

return 0;

}

The square bracket [] notation (as opposed to the pointer * notation) is convenient because we can forget we
are working with pointers. However, they are just a notational convenience. We can remove them and work
with pointers to get a more clear indication of what is going on. This program is available at:

/home/cs124/examples/3-3-arrays.cpp

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.3 Pointers | Page 265

Problem 1

What is the output of the following code?

{
float accountSam = 100.00;

float accountSue = 200.00;

float * pAccountl = &accountSam;
float * pAccount2 = &accountSue;
float * pAccount3 = &accountSam;
float * pAccount4 = &accountSue;

*pAccountl += 10.00;
*pAccount2 *= 2.00;
*pAccount3 -= 15.00;
*pAccountd4 /= 4.00;

cout << accountSam << endl;

Answer:

Please see page 258 for a hint.

Problem 2

What is the output of the following code?

{
int a = 10;
for (int * b = &a; *b < 12; (*b)++)
cout << ".";
cout << endl;
}
Answer:

Please see page 258 for a hint.

Problem 3

What is the output of the following code?

2 b | c | d

{
int a = 16;
int * b = &a;
int c = *b;
a = 42;
int * d = &c;
a = *b;
d = &a;
*d = 99;
cout << "*¥b == " << *b <«

endl;

}

Answer:
Page 266 | 3.3 Pointers | Unit 3: Pointers & Arrays | Procedural Programming in C++

I Please see page 258 for a hint. I

Problem 4

What is the output of the following code?

{
int a = 10;
int * b = &a;
while (*b > 5)
(*b)--;
cout << "Answer: "
<< a
<< endl;
}
Answer:

Please see page 258 for a hint.

Problem 5

What is the output of the following code?

void funky(int * a)

{
*a = 8;
return;

}

int main()

{
int b = 9;
funky (&b);
cout << b << endl;
return 0;

}

Answer:

Please see page 262 for a hint.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.3 Pointers | Page 267

Write a program to ask two people for their account balance. Then, based on who has the most money, all
subsequent purchases will be charged to his or her account.

Example

User input is underlined:

What is Sam's balance? 229.12
What is Sue's balance? 241.45
Cost of the date:
Dinner: 2.1
Movie: 14.50
Ice cream: 6.00
Sam's balance: $229.12

Sue's balance: $188.76

w
(o]

Note that there is a tab before “Dinner,” “Movie,” and “Ice cream.” There are spaces after the colons.

Challenge

As a challenge, try to write a function to reduce the value of the debit card according to the cost of the
date:

void date(float *pAccount);

This function will contain the three prompts (Dinner, Movie, and Ice Cream) and reduce the value of
pAccount by that amount.

Assignment

Write the program to store the two account balances. Create a pointer to the account that has the largest
balance. Then, for the three item costs on the date, reduce the balance of the appropriate account using the
pointer. The testbed is:

testBed cs124/assign33 assignment33.cpp

Don’t forget to submit your assignment with the name “Assignment 33” in the header.

Please see page 261 for a bint.

Page 268 | 3.3 DPointers | Unit 3: Pointers & Arrays | Procedural Programming in C++

Unit 3. Pointers & Arrays

3.4 Pointer Arithmetic

The bishop asked Sam to deliver a stack of flyers to all the apartments in his complex. Remembering that an
apartment address is like a pointer (where the dereference operator takes you to the apartment) and the
apartment block is like an array (a contiguous set of addresses referenced by the first address), Sam realizes
that this is a pointer arithmetic problem. He starts at the first address (the pointer to the first item in the
array), delivers the flyer (dereferences the pointer with the *), and increments the address (adds one to the
pointer with p++). This is continued (with a FOR loop) until the last address is reached.

Objectives
By the end of this class, you will be able to:

e Understand how to advance a pointer variable with the ++ operator.
e Traverse a string with the second standard FOR loop.
e Explain the difference between a constant pointer and a pointer to a constant value.

Prerequisites

Before reading this section, please make sure you are able to:

* Declare a pointer variable (Chapter 3.3).

e Point to an existing variable in memory with a pointer variable (Chapter 3.3).
e Get the data out of a pointer (Chapter 3.3).

e Dass a pointer to a function (Chapter 3.3).

e Understand the role the null character plays in string definitions (Chapter 3.2).

e Write a loop to traverse a string (Chapter 3.2).

Overview

Pointer arithmetic is the process of manipulating pointers to better facilitate accessing arrays of data in
memory. Though the term “arithmetic” implies that a whole range of arithmetic operations can be performed,
we are normally restricted to addition and subtraction.

Recall from Chapter 3.3 that a pointer is a reference to a location in memory. We typically do not know
where this memory is located until run-time; the operating system places the program in memory and often
puts it in a different location every time. Recall from Chapter 3.0 that arrays are collections of data guaranteed
to reside in contiguous blocks of memory. From these two observations it should be clear that, given some
array[i], the location array[i + 1] should be in the adjacent location in memory. Pointer arithmetic is the
process of levering this proximity to access array data.

array
array+1

array+2

0 1 2 3 4

43196 |21 |35|42

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.4 Pointer Arithmetic | Page 269

Consider the following code:

{

char text[] = "CS"; // some buffer in memory

char * pC = text; // text refers to the first item, so pC does as well

char * pS = text + 1; // the next location in memory is one item beyond the first
}

In this example, text points to the string “cs” or, more explicitly, to the first letter of the string. Next, the
variable pc inherits its address from text which points to ‘c’ (hence the name pc). Finally, since the letter ‘s’ is
one letter beyond ‘C’ in the string, it follows it has an address one greater than the ‘C’. Thus, we can find the
address of ‘s’ by taking the address of ‘C’ (as specified by the variable text) and adding one:

text | oxbf312910 = C S | \o

/

pC oxbf312910

pS oxbf312911

It turns out that integer pointers work the same way. The only difference is that integers are 4 bytes in length
where characters are one. However, the pointer arithmetic is the same:

{
int array[] =
42, 99 // two numbers using 8 bytes of memory
}s
int * p42 = array; // just like characters, points to the first item
int * p99 = array + 1; // add one to move forward four bytes!
}

Just like the first example, array points to the first number in the list. Next, the variable p42 has the same value
(the address of 42) as array. Finally, since the number 99 is next to the number 42, it follows it will have an
address one greater. Thus, we can find the address of 99 by taking the address of 42 and adding one.

array | oxbf423754 42 99
p42 oxbf423754

p99 oxbf423758

Because arrays (including strings) are just pointers, it is often most convenient to traverse an array with a
pointer than with an index. This involves incrementing the pointer variable rather than an index.

Page 270 | 3.4 Pointer Arithmetic | Unit 3: Pointers & Arrays | Procedural Programming in C++

Arrays

As discussed before, arrays are simply pointers. This gives us two different notations for working with arrays:
the square bracket notation and the star notation. Consider the following array:

int array[] =

7, 4,2,9,3,1,8,2,9,1, 2
};

This can be represented with the following table:

array

N\

74293182912

Consider the first element in an array. We can access this item two ways:

cout << "array[@] == " << array[@] << endl;
cout << "*array == " << *array << endl;
assert(array[@] == *array);

The first output line will of course display the value 7. We learned this from Chapter 3.0. The second will
dereference the array pointer, yielding the value it points to. Since pointers to arrays always point to the first
item, this too will give us the value 7. In other words, there is no difference between *array and array[e];
they are the same thing!

Similarly, consider the 6™ item in the list. We can access with:

cout << "array[5] == " << array[5] << endl;
cout << "*(array + 5) == " << *(array + 5) << endl;
assert(array[5] == *(array + 5));

This is somewhat more complicated. We know the 6" item in the list can be accessed with array[5]
(remembering that we start counting with zero instead of one). The next statement (with *(array + 5) instead
of array[5]) may be counterintuitive. Since we can point to the 6™ item on the list by adding five to the base
pointer (array + 5), then by dereferencing the resulting pointer we get the data:

array array + 5

N\ N\

74293182912

!

array[5]

Therefore we can access any member of an array using either the square bracket notation or the star-
parentheses notation.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.4 Pointer Arithmetic | Page 271

It turns out that the square bracket array notation ([]) is actually a macro expansion for an
addition and a dereference. Consider the following code:

cout << array[5] << endl;
We have already discussed how this is the same as adding five to the base pointer and dereferencing:
cout << *(array + 5) << endl;

Now, from the commutative property of addition, we should be able to re-order the operands of an
addition without changing the value:

cout << *(5 + array) << endl;

From here, it gets a bit dicey. The claim is that the addition and dereference operator combined are the
same as the square bracket operator. If this is true (and it is!), then the following should be true:

cout << 5[array] << endl;

Thus, under the covers, arrays are just pointers. The square brackets are just used to make it more
intuitive and easy to understand for novice programmers. Please see the following code for an example
of how this works at 3-4-notationAbuse.cpp or:

/home/cs124/examples/3-4-notationAbuse.cpp

Pointers as Loop Variables

Up to this point, all the loops we have written to access individual members of a string or array have used
index variables and the square-bracket notation. It turns out that we can write an equivalent pointer-loop for
each index-loop. These loops tend to perform better than their index counterparts because fewer assembly
instructions are required. The two main applications for pointers as loop variables are array traversing loops
and string traversing loops.

Array traversing loop

Recall that the standard way to use a for loop to walk through an array is:

for (int i = @; 1 < num; i++)
cout << array[i];

It turns out we can use a pointer to loop through an array of integers if the length of the array is known.

Page 272 | 3.4 Pointer Arithmetic | Unit 3: Pointers & Arrays | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-4-notationalAbuse.html

Consider the following array:
int array[] =

43, 96, 21, 35, 42
};

In this example, the pointer to the beginning of the list is array and the pointer to the item off the end of the

list is array + num:

array pEnd
\ \
0 1 2 3 4 5

43196213542 »?

This allows us to write a loop to walk through the list:

int * pEnd = array + num;
for (int * p = array; p < pEnd; p++)
cout << *p << endl;

Observe how, with each iteration, the pointer variable p advances by one address. This continues until p is no
longer less-than the item off the end of the list pend. Since we are working with arrays, we can dereference
each item in the list with *p. For an example of this loop in action, please see 3-4-pointerArray.cpp or:

/home/cs124/examples/3-4-pointerArray.cpp

String traversing loop

With strings, the end of the string is defined as the null-character. This leads us to the second standard for
loop: traversing a string with a pointer.

for (char * p = text; *p; p++)
cout << *p;

Just like with the aforementioned array example, we advance the pointer rather than an index into the string.
The big difference is the controlling Boolean expression: a null-terminator check rather than looking for a
pointer to the end of the string.

text p

1

S|lo|f|t|wla|r]|e D|le|lv|e|l|o|lp|m|le[n|t\O

In this example, text points to the first item in the string (°s’). The loop starts by assigning p to also point to
the first item. The loop continues by advancing p through the string. The loop terminates when *p is no
longer true. This occurs when p points to the null-character.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.4 Pointer Arithmetic | Page 273

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-4-pointerArray.html

Example 3.4 - String Traverse

This example will demonstrate how to traverse a string using the pointer notation. It will use the second

(? standard FOR loop:
g for (char * p = text; *p; p++)
Write a function to display the contents of a string, one character on each line:
= Please enter the text: Point
S P
=N o
e i
= "
t

The function will take a pointer to a character as a parameter. Recall that arrays are pointers to the first
item in the list. The same thing is true with strings. String variables are actually pointers to the first
character. Thus the prototype is:

void display(const char * text);

From here, we will use the second standard FOR loop to iterate through each item in the string. Recall
that the dereference operator * is needed to retrieve the data from the string.

/************************************

e]
9‘ * DISPLAY
E_ * Display the passed text one character
o * at a time using a pointer
5 ***********************************/
void display(const char * text)
{
// second standard for loop
for (const char *p = text; // p will point to each item in the string
*p; // as long as *p is not the NULL character
p++) // increment one character at a time
{
cout << "\t' << *p << endl; // access each item with the dereference *
}
}

As a challenge, can you modify the program so the function displays every other character in the string?
What happens when there are an odd number of characters in the string? How can you detect that
condition so the program does not malfunction?

The complete solution is available at 3-4-traverse.cpp or: Ty

/home/cs124/examples/3-4-traverse.cpp

osTy 92 foSuarreyn

Page 274 | 3.4 Pointer Arithmetic | Unit 3: Pointers & Arrays | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-4-traverse.html
https://video.byui.edu/media/3.4+-+String+Traverse/0_hk0cloeq/18442462

Example 3.4 - Convert Case

uonnjos

8udreyD

OSTY 99§

This example will demonstrate how to walk through a loop using the pointer notation. In this case,
processing is performed on every character in the string.

Write a program to convert uppcercasce characters to lowercase and vice-versa.

Please enter your text: sOFTWARE eNGINEERING
Software Engineering

There are two components to this problem. The first is to use the second standard FOR loop to walk
through the string. The second part is to use the pointer notation instead of the array notation to
reference each member of the string.

Array notation Pointer notation

void convert(char text[]) void convert(char * text)
{ {
for (int i = 0; text[i]; i++) for (char * p = text; *p; p++)
if (isupper(text[i])) if (isupper(*p))
text[i] = tolower(text[i]); *p = tolower(*p);
else else
text[i] = toupper(text[i]); *p = toupper(*p);
} }

Notice how the array notation uses the square bracket [] notation to declare the function parameter
while the pointer notation uses the *. Both notations mean mostly the same thing, “a pointer to the first
item in the string.”

In the array notation solution, the individual items in the string are referenced with text[i]. With the
pointer notation, we use the *p notation. Both produce the same results but using a different
mechanism. In general, the pointer notation is preferred because it is simpler and more efficient.

As a challenge, try to modify the above program to count the number of uppercase letters in the input
stream. The prototype is:

int countUpper(const char *text);

The complete solution is available at 3-4-toggleCase.cpp or:

/home/cs124/examples/3-4-toggleCase.cpp

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.4 Pointer Arithmetic | Page 275

Unit 3

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-4-toggleCase.html
https://video.byui.edu/media/3.4+-+Toggle+Case/0_1qsqsvow/18442462

Example 3.4 - String Length

@Ml This example will demonstrate how to walk through a string using the pointer notation.
o]
o
Write a program to find the length of a string. This will be done using the array notation, the pointer
E notation using the second standard FOR loop, and the optimal solution:
E} Please enter your text: Software
J— .
o Array notation: 8
= Pointer notation: 8

Optimal version: 8

The most straight-forward way to do this is to walk through the string using the second standard FOR
loop. Here, the pointer p will serve as the loop control variable. Inside the body of the loop, we will
have a length variable incrementing with each iteration.

P

}

Hl e/l 1 ol\e
length =1 2 3 4 5

Since we only increment length when we have not yet encountered the null character, the value at the

end of the loop should be the length of the string.

/************************************
* STRING LENGTH : pointer version

* Increment the length variable with
* every iteration

okt skok sk skokok sk sk skokok sk skok sk skok koo skok s okokokskokok /

int stringlLength(char * text)

oS

e
g.
e
=)

{
int length = 0; // declared out of FOR loop scope
for (char * p = text; *p; p++) // second standard FOR loop
length++; // increment length every iteration
return length; // return the length variable
}

Notice how two variables (1ength and p) increment with each iteration of the loop. A more efficient
solution would not have this redundancy. Please see the video and associated code for the better
solution.

The complete solution is available at 3-4-stringlength.cpp or: Ty

/home/cs124/examples/3-4-stringlength.cpp

OS[Y 92§

Page 276 | 3.4 Pointer Arithmetic | Unit 3: Pointers & Arrays | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-4-stringLength.html
https://video.byui.edu/media/3.4+-+String+Length/0_i34by4k5/18442462

ownd(

Example 3.4 - String Compare

This example will demonstrate how to iterate through two strings at the same time. This will be done
using the array notation with an index, the pointer notation using the second standard FOR loop, and
an optimal solution.

wR[qoIJ

Write a program to determine if two strings are the same. Note that the equivalance operator alone is
insufficient (textl == text2) because it will just compare two addresses. We also cannot use the
dereference operator alone (*textl == *text2) because it will just compare the first two items in the
string. It will be necessary to compare each item in both strings using a loop.
Please enter text 1: Software
Please enter text 2: Software
Array notation: Equal

Pointer notation: Equal
Optimal version: Equal

oS

uonn

To solve the problem, it is necessary to have two pointer variables moving in tandem through the two
strings:

s
C s\e? ? ? 2
C's |1 2 4o
to

The hardest problem here is to know when to terminate the loop. There are three conditions that could
terminate the loop:

1. When *p1 1= *p2 or when the currently considered character is different.
2. When the end of the first string is reached. *p1 == '\e’
3. When the end of the second string is reached. *p2 == "\o'

Thus, when either of these conditions are met, the loop terminates. If the first condition terminates the
loop, then the strings are different. Otherwise, the strings are the same.

bool isEqual(char * textl, char * text2)

OS]y 999

{
char * pi; // for textl
char * p2; // for text2
for (pl = textl, p2 = text2; // two pointers require two initializations
*pl == *p2 && // same logic as with array index version but
*pl && *p2; // somewhat more efficient
pl++, p2++) // both pointers need to be advanced
5
return (*pl == *p2);
}
The complete solution is available at 3-4-stringCompare.cpp or: Ty

/home/cs124/examples/3-4-compareString.cpp

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.4 Pointer Arithmetic | Page 277

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-4-stringCompare.html
https://video.byui.edu/media/3.4+-+String+Compare/0_0at2nhw8/18442462

Constant Pointers
Earlier in the semester, we introduced the notion of the const modifier:

const int SIZE = 10; // SIZE can never change

The const modifier allows the programmer to specity (and the compiler to enforce!) that a given variable will
never change. Along with this, we can also point to constant data. The most common time we do this is when
passing arrays as parameters:

void displayName(const char * name); // displayName() cannot change name

In this example, the function displayName() is not able to change any of the data in the string name.

Another class of constant data is a constant pointer. A constant pointer refers to a pointer that must always
refer to a single location in memory. Consider the following code:

int array[4]; // declare an array of integers
array[@] = 6; // legal. The data is not constant.
array++; // ERROR! We cannot change the variable ‘array’!

When we declare an array, the array pointer will always refer to the same location of memory. We cannot
perform pointer arithmetic on this variable.

It turns out that whenever we declare an array using the square bracket notation ([1), whether in a function
parameter or as a local variable, that variable is a constant pointer. Consider the following code:

void function(char * parameterl, // can change both pointer and value
const char * parameter2, // can change pointer but not value
char parameter3[], // can change value but not pointer
const char parameter4[]) // can change neither value nor pointer
{
// change the value
*parameterl = 'x'; // legal because parameter 1 is not a const
*parameter2 = 'x'; // ERROR! parameter2 is a const!
*parameter3 = 'x'; // legal because parameter 3 is not a const
*parameterd = 'x'; // ERROR! parameter4 is a const

// change the pointer

parameterl++; // legal; not a const pointer
parameter2++; // legal; not a const pointer
parameter3++; // ERROR! parameter3 is a const pointer
parameterd++; // ERROR! parameter4 is a const pointer

}

When a parameter is passed with the square brackets or when an array is declared in a function, it is still
possible to do pointer arithmetic. Consider the following example:

{

int array[4]; // constant pointer.

int * p = array; // not a constant pointer!

p++; // we cannot do this with array. array++ would be illegal!
}

Even though array and p refer to the same location in memory, we can increment p but not array because
array 1s a constant pointer whereas p is not.

Page 278 | 3.4 Pointer Arithmetic | Unit 3: Pointers & Arrays | Procedural Programming in C++

The most common way to make a parameter a constant pointer is to use the [] notation
in the parameter declaration. This, unfortunately, implies that the pointer is an array (which it may not |
be!). Another way to make a variable a constant pointer is to use the const modifier after the *:

void function(int * pointer,
const int * pointerToConstant,
int * const constantPointer,
const int * const constantPointerToConstant);

This is the same as:

void function(int * pointer,
const int * pointerToConstant,
int constantPointer[], // note the []s
const int constantPointerToConstant[]); // more []s

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.4 Pointer Arithmetic | Page 279

Problem 1

What is the output of the following code?

cout << "d == " << d << endl;

Answer:

: 2 b | c | d |

Please see page 258 for a hint.

Problem 2

How much memory does each of the following reserve?

char text[2];

char text[] "CS 124";

char text[]

"Point";

char * text[6];

Please see page 216 for a hint.

Problem 3

What is the output of the following code?
{

char x[]
char yJ[]
char * z;

"Sam";
"SUE";

if (x ==y)
zZ = X;
else
zZ =Y,

cout << *z << endl;

Answer:

Please see page 277 for a hint.

Page 280 | 3.4 Pointer Arithmetic | Unit 3: Pointers & Arrays

Procedural Programming in C++

Problem 4

What is the output of the following code?
{

char text[] = "Software";
for (int i = 4;
i< 7;
i++)
cout << text[i];

cout << endl;

Answer:

Please see page 219 for a hint.

Problem 5

What is the output of the following code?

{
char al[le] = "42";
char a2[10];

int i;

for (i = @; al[i]; i++)
a2[i] = al[i];

az2[i] = '\e@’;

cout << a2 << endl;

Answer:

Please see page 277 for a hint.

Problem 6

What is the output of the following code?

¢ char text[] = "Banana";
char * pA = text + 2;
cout << *pA << endl;
}
Answer:

Please see page 148 for a hint.

Procedural Programming in C++ |

Unit 3: Pointers & Arrays

3.4 Pointer Arithmetic

Page 281

Problem 7

What is the output of the following code?

{
int array[] = {1, 2, 3, 4};
cout << *(array + 2) << endl;
cout << array + 2 << endl;
cout << array[3] << endl;
cout << *array + 3 << endl;
}
Answer:

Please see page 271 for a hint.

Problem 8

What is the output of the following code?

{
char * a = "Software";
char * b;
while (*a)
b = a++;
cout << *b << endl;
}
Answer:

Please see page 49 for a hint.

Problem 9

What is the output of the following code?

{
char text[] = "Software";
int a = 9;
for (char * p = text; *p; p++)

a++;

cout << a << endl;

}

Answer:

Please see page 49 for a hint.

Page 282 | 3.4 Pointer Arithmetic | Unit 3: Pointers & Arrays

Procedural Programming in C++

Start with Assignment 3.2. Modify countLetters() so that it walks through the string using pointers instead
of array indexes. The output should be exactly the same as with Assignment 3.2.

Example

Two examples... The user input is underlined.

Example 1:

Enter a letter: z
Enter text: NoZ'sHere!
Number of 'z's: @

Example 2:

Enter a letter: a
Enter text: Brigham Young University - Idaho
Number of 'a's: 2

Assignment
The test bed is available at:

testBed csl124/assign34 assignment34.cpp

Don’t forget to submit your assignment with the name “Assignment 34” in the header.

Please see page 261 for a hint.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.4 Pointer Arithmetic | Page 283

Unit 3. Pointers & Arrays
TS YT NS

3.5 Advanced Conditionals

Sue is working on a program that has a simple menu-based user interface. The main menu has six options,
each one associated with a letter on the keyboard. She could create a large IF/ELSE statement to implement
this menu, but that solution seems tedious and inelegant. Fortunately she has just learned about SWITCH
statements which seem like the perfect tool for the job.

Objectives
By the end of this class, you will be able to:

e Create a SWITCH statement to modity program flow.
e Create a conditional expression to select between two expressions.

Prerequisites

Before reading this section, please make sure you are able to:

® Declare a Boolean variable (Chapter 1.5).

e Convert a logic problem into a Boolean expression (Chapter 1.5).
e Recite the order of operations (Chapter 1.5).

e Create an IF statement to modify program flow (Chapter 1.6).

e Recognize the pitfalls associated with IF statements (Chapter 1.6).

Overview

A fundamental component of any programming language is decision-making logic. Up to this point, the only
decision-making mechanism we have learned is the IF statement. While this is a useful and powerful construct,
it is actually rather limited: it will only help you choose between two options. We have worked around this
restriction by nesting IF statements (Chapter 1.6) and using arrays (Chapter 3.0). This chapter will introduce
three new decision making tools: SWITCH statements, conditional expressions, and bitwise operators.

Conditional Expression Bitwise Operators

Alllows the programmer to Useful for selecting between two Enables a single integer to store
choose between more than two expressions or values (rather than 32 Boolean values worth of data

options. Each option is specified —two statements as an IF statement = for a more compact
with an integral value. does). representation of an array of
switch(option) cout << "Greetings " bools.
o <« (isMa}e'?") int value =
case 'Q': . Mr." : "Mrs.") 0x0001 | // 15t bit
r‘e1':url'r.1 true; << lastl?lame 0x0004 | // 37 pit
case' D': << endl; 0x0200; // 10t bit
display(data);
break; if (value & 0x001)

cout << "1st bit";

Page 284 | 3.5 Advanced Conditionals | Unit 3: Pointers & Arrays | Procedural Programming in C++

Switch

Most decisions in programming languages are made with IF statements. This works great if there are only
two possible decisions. While it is possible to use multiple IF statements to achieve more than two possibilities
(think of the tax function from Project 1), the answer is less than elegant at times. The SWITCH statement
provides the ability to specify more than two possibilities in an elegant and efficient way.

Expression

The evaluation of this expression will determine which

(/ code will be executed. Unlike an IF statement, this
. evaluates to an integer, not a Boolean.
witch, (percentage / 10 g

s
0
| tase 10 Case Labels
1 1 .
| f:asé; 2 t Grade = A" These enumerate the different options in the switch
Lo iﬁeair“ rade = ? statement. Each must be a literal or a constant, known
1 | 5 5 0
| |case 8: at compile time.
i i letterGrade = 'B';
.1 break; Body Statements
| case 7:
E : letterGrade = 'C'; The code to be executed when the controlling
Lo break; I expression evaluates to one of the case labels (7 in this
)
S asé 6: case). Can be any statement; no need for curly braces
. 1 letterGrade = 'D'; when there is more than one statement. Indicate the
.1 break; body statement is finished with break.
i |default:
. 1 letterGrade = 'F'; Default
1
Yoo
} . ! If none of the case labels correspond to the value from
Lo 19 space indent the controlling expression, then the default case is
P p used. There can be zero or one default in a switch
i1 6 space indent
I . statement.
13 space indent
Expression

The SWITCH statement is driven by a controlling expression. This expression will determine which CASE
will be executed. The best way to think of the controlling expression is like a switch operator for a railroad
track. There are a finite number of tracks down which the operator can send a train, each identified by a track
number. The operator’s job is to match the physical track with the requested track number. Similarly, the
controlling expression in a SWITCH statement determines which CASE label to execute.

The controlling expression must evaluate to an integer. Evaluation to a bool, char, or long works as well
because each can be readily converted to an int. You cannot use a floating point number or pointer as the
data-type of the controlling expression.

For example, consider the following code to implement a user interface menu. The following menu options
are presented to the user:

Please enter an option:

. Save the game

. New game

. Play the current game

.. Display the current status
. Quit

. Display these options again

vO O T=2W0n

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.5 Advanced Conditionals | Page 285

The following code will implement the menu:

/******************************
* EXECUTE COMMAND
* Execute command as specified
* by the caller

******************************/

void executeCommand(char option) // note that this is a char, not an integer

{
switch (option) // because a char readily converts to an integer, this
{ // is not a problem
case 'S': // S’ corresponds to 83 on the ASCII table
saveGame(game); // execute the function corresponding to the ¢S’ input
break; // finished with this case
case 'N':
newGame (game) ;
break;
- // there are more options here of course
} // don’t forget the closing curly brace
}

The controlling expression can do more complex arithmetic. This is commonly the case when working with
tloating point numbers. In this second example, we are converting a GPA into a more workable medium:

/*******************************

* DISPLAY GRADE

* Display the letter grade version
* of a GPA
*******************************/

void displayGrade(float gpa) // value is originally a float

{
switch ((int)(gpa * 10.9)) // note how we cast to an integer

case 40: // corresponding to a 4.0 GPA
cout << "A+";
break;
case 39: // corresponding to a 3.9 --> 3.3 GPA
case 38:
case 37:
case 36:
case 35:
case 34:
case 33:
cout << "A";
break;

}

When the controlling expression cannot be converted to an integer, then we will get a compile error:

{
char name[] = "CS 124";
switch (name) // ERROR! Pointers cannot be converted to an integer
{
}
}

The problem here is that we cannot readily convert a pointer into an integer. Typically some non-trivial
processing needs to happen before this can be done. Of course, the programmer could just cast the address
into an integer, but that would probably be a bug!

Page 286 | 3.5 Advanced Conditionals | Unit 3: Pointers & Arrays | Procedural Programming in C++

Floating point numbers also cannot be used for the controlling expression. This makes sense when you realize
that floating points are approximations.

{
float pi = 3.14159;
switch (pi) // ERROR! Floating point numbers cannot be converted
// to an integer without casting
}
}

Case labels

Back to our train-track analogy, the CASE label in a SWITCH statement corresponds to a track number.
Note that, aside from Harry Potter’s wizarding world, there is no such thing as platform 9%. Similarly, each
CASE label must be an integer.

There is an additional constraint. In the C+ + language, the compiler must know at compile time each CASE
label. This means that the value must be a constant (const int VALUE = 4;) or a literal (4), it cannot be a
variable. The final constraint is that each label must be unique. Imagine the confusion of the train operator
trying to determine which “track 12” the train wants!

The first example corresponds to standard integer literal case numbers. In this case, we are converting a class
number into a class name:

/**
* DISPLAY CLASS NAME

* Convert a class number (124) into a

* name (Introduction to Software Development)
**/
void displayClassName(int classNumber)

{

switch (classNumber) // classNumber must be an integer

{

case 124:
cout << "Introduction to Software Development\n";
break;
case 165:
cout << "Object Oriented Software Development\n";
break;
case 235:
cout << "Data Structures\n";
break;
case 246:
cout << "Software Design & Development\n";
break;

}

In the second example, we have a character literal as the case label. In this case, we will be displaying the name
tor a typed letter:

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.5 Advanced Conditionals | Page 287

/**
* DISPLAY LETTER NAME
* Display the full name (“one”) corresponding
* to a given letter (€1°)
**/

void displayLetterName(char letter)

{
switch (letter) // though letter is a char, it readily converts
{ // to an integer
case 'A': // character literal, corresponding to 65
cout << "Letter A";
break;
case '1': // character literal 48
cout << "Number one";
break;
case 32: // corresponding to the character literal !
cout << "Space";
break;
}
}

Finally, we can use a constant for a case label. Here, the compiler guarantees the value cannot be changed.

const int GOOD 1;
const int BETTER 2;
const int BEST 3;

/**

* DISPLAY
* convert a value into the name
**/
void display(int value)
{
switch (value)
{
case BEST:
cout << "Best!\n";
break;
case BETTER:
cout << "Better!\n";
break;
case GOOD:
cout << "Good!\n";
break;

}

There are three common sources of errors with case labels. The first is to use something other than an integer.
This will never correspond to the integer resulting from the controlling expression. The second is to use a
variable rather than a literal or constant. The final is to duplicate a case label:

Page 288 | 3.5 Advanced Conditionals | Unit 3: Pointers & Arrays | Procedural Programming in C++

int x = 3;
switch (4)
{
case "CS 124": // ERROR! Must be an integer and this is a pointer to a char
break;
case 3.14159: // ERROR! This is a float and needs to be an integer
break;
case X: // ERROR! This is a variable and it needs to be a literal
break;
case 2:
break;
case 2: // ERROR! Duplicate value
break;
}
}
- £
® Sue’s Tips
ﬁ@L It turns out that a SWITCH statement is much more efficient than a collection of IF/ELSE

statements. The reason for this has to do with how compilers treat SWITCH statements.
Typically, the compiler creates something called a “perfect hash” which allows the program to
jump to exactly the right spot every time. Thus, a SWITCH with 100 CASE labels is just as
efficient as one with only 3. The same cannot be said for IF/ELSE statements!

Default

The DEFAULT keyword is a special CASE label corresponding to “everything else.” In other words, it is
the catch-all. If none of the other CASE labels correspond to the result of the controlling expression, then the
DEFAULT is used. There can be either zero or one default in a switch statement. Typically we put the default
at the end of the list but it could be anywhere.

The first example illustrates using a DEFAULT where multiple CASEs would otherwise be needed:

switch (numberGrade / 190)
{
case 10:
case 9:
cout << "Perfect job";
break;
case '8':
case '7"':
cout << "You passed!\n";
break;
default: // covering 6, 5, 4, 3, 2, 1, and ©
cout << "Take the class again\n";

}

In these cases, the DEFAULT is used to minimize the size of the source code and to increase efficiency. It is
useful to put a comment describing what cases the DEFAULT corresponds to.

The second example uses the DEFAULT to handle unexpected input. In these cases, there is typically a small
number of acceptable input values and a very large set of invalid input values:

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.5 Advanced Conditionals | Page 289

char input;
cout << "Do you want to save your file (y/n)? ";

cin >> input; // though a char is accepted, there are only
// two valid inputs: ‘y’ and ‘n’
switch (input) // 256 possible values, but only 2 matter
case 'Y': // we are treating ‘Y’ and ‘y’ the same here
case 'y':
save(data);
break;
case 'n': // the “do-nothing” condition
case 'N':
break;
default: // everything else
cout << "Invalid input '"
<< input
<< "', Try again\n";

}

The most common error with DEFAULT statements is to try to define more than one.

Body statements

You can put as many statements inside the CASEs as you choose. The {}s are only needed if you are declaring
a variable. To leave a switch statement, use the BREAK statement. This will send execution outside the
SWITCH statement. Note that the BREAK statement is optional.

/******************************
* EXECUTE COMMAND
* Execute command as specified
* by the caller

******************************/

void executeCommand(char option)

{
switch (option)
{
case 's': // When there are two case labels like this, the
// fall-through is implied
case 'S': // Save and Quit
saveGame(game);
// fall-through.. We don’t want a break because we want the ‘Q’ condition next
case 'q':
case 'Q': // Quit
quit(game);
break;
}
}

A common error is to forget the BREAK statement between cases which yields an unintentional fall-through.
It a fall-through is needed, put a comment to that eftect in the code.

Page 290 | 3.5 Advanced Conditionals | Unit 3: Pointers & Arrays | Procedural Programming in C++

Example 3.5 - Golf

@Bl This example will demonstrate a simple SWITCH statement to enable the program to select between
o . .
=jl six different options.
o
In the game of golf, each hole has a difficulty expressed in terms of how many strokes it takes for a
standard (read “a very good”) golfer to complete. This standard is called “par.” If a golfer completes a
- hole in one fewer strokes than par, he is said to achieve a “birdie” (no actual birds are used in this
=J process). If he does two better, he achieves an “eagle.” Finally, if he takes one more stroke than
%‘ necessary, he gets a “bogie.” Write a function to convert a score into the corresponding label.
B What is your golf score? 3
What is par for the hole? 5
You got an eagle
The important work is done in the following function:
/***********************************
* DISPLAY
* Translate the golfer performance into
* a "bogie," "par," or whatever
***********************************/
void display(int score, int par)
{
// translate the golfer performance into a "bogie", or "par" or whatever
switch (score - par)
{
case 2:
cout << "You got a double bogie\n";
break;
case 1:
» cout << "You got a bogie\n";
@) .
E- break;
(=)
ot o
o case 0:
= cout << "You got par for the hole\n";
break;
case -1:
cout << "You got a birdie\n";
break;
case -2:
cout << "You got an eagle\n";
break;
default:
cout << "Your score was quite unusual\n";
}
return;
¥
"<l The complete solution is available at 3-5-golf.cpp or:
o
E: /home/cs124/examples/3-5-golf.cpp
@
o

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.5 Advanced Conditionals | Page 291

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-5-golf.html
https://video.byui.edu/media/3.5+Advanced+Conditionals+-+Golf/0_2lsidoqi

Conditional Expression

While an IF statement chooses between two statements, a conditional expression chooses between two
expressions. For example, consider the following code inserting a person’s title before their last name according
to their gender:

cout << "Hello "
<< (isMale ? "Mr. " : "Mrs. ")
<< lastName;

Even though we have a single cout statement, we can embed the conditional expression right in the middle
of the statement.

Up to this point, we have used unary operators (operators with a single operand) such as increment (++a),
logical not (!a), address-of (&a) and dereference (*a). We have also used binary operators (operators with
two operands) such as addition (a + b), modulus (a % b), logical and (a & b), greater than (a > b), and
assignment (a += b). There is exactly one ternary operator (operator with three operands) in the C++
language: the conditional expression:

<Boolean expression> ? <true expression> : <false expression>

Like all operators, the result is an expression. In other words, the evaluation of the conditional expression is
either the true-expression or the false-expression.

Note that the conditional expression operator resides midway on the order of operations table. Because the
insertion (<<) and the extraction (>>) operator are above the conditional expression in the order of operations,
we commonly need to put parentheses around conditional expressions.

Example 1: Absolute value

Consider, for example, the absolute value function. In this case, we return the value if the value is already
positive. Otherwise, we return the negative of the value. In other words, we apply the negative operator only
if the value is already negative.

number = (number < ©) ? -number : number;
Of course this could be done with an IF statement, but the conditional expression version is more elegant.

Example 2: Minimum value

In another example, we would like to find the smaller of two numbers:

lower = (numberl > number2) ? number2 : numberl;

Here we are choosing between two values. The smaller of the two will be the result of the conditional
expression evaluation and subsequently assigned to the variable lower.

e
% Sue’s Tips
ﬁél/, Conditional expressions have comparable performance characteristics to IF statements;

compilers typically treat them in a similar way. Some programmers avoid conditional expressions
because they claim it makes the code more difficult to read. Some programmers favor conditional
expressions because they tend to make the code more compact. In general, this is a stylistic
decision. As with all stylistic issues, favor a design that increases code clarity and exposes potential
bugs.

Page 292 | 3.5 Advanced Conditionals | Unit 3: Pointers & Arrays | Procedural Programming in C++

Example 3.5 - Select Tabs or Newlines

This example will demonstrate how to use conditional expressions to choose between options. While
an IF statement could do the job, conditional expressions are more elegant.

w[qoIJ

Write a program to display the multiplication tables between 1 and n. We wish to put a tab between
each column but a newline at the end of the row. In other words, we put a tab after every number
except the number at the end of the row:

How big should your multiplication table be? 4

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

uonnjog

To display two-dimensional data such as a multiplication table, it is necessary to have two counters: one
for the row and one for the column. After each number in the table, we will have either a newline *\n"
oratab "\t'. We choose which is to be used based on the column number.

void displayTable(int num)

{
for (int row = 1; row <= num; row++) // count through the rows
for (int col = 1; col <= num; col++) // count through the columns
cout << (row * col) // display the product
<< (col == num ? '\n' : "\t'); // tab or newline, depending
}

Notice how the function could have been done with an IF statement, but it would not have been as
elegant:

void displayTable(int num)

{
for (int row = 1; row <= num; row++) // count through the rows
for (int col = 1; col <= num; col++) // count through the columns
if (col == num) // are we on the last column?
cout << (row * col) << endl; // display an endl
else
cout << (row * col) << '\t'; // display a tab
}
}

As a challenge, modify the above function to handle negative values in the num parameter. If a negative
value is passed, make it a positive value using absolute value. Implement absolute value using a
conditional expression.

The complete solution is available at 3-5-selectTabOrNewLine.cpp or: X hs

/home/cs124/examples/3-5-selectTabOrNewline.cpp

osTy 995 foSuarreyn

Procedural Programming in C++

Unit 3: Pointers & Arrays

3.5 Advanced Conditionals

Page 293

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-5-selectTabOrNewline.html
https://video.byui.edu/media/3.5+Advanced+Conditionals+-+Select+Tab+or+Newline/0_pl2sag9d

Bitwise Operators

To understand bitwise operators, it is first necessary to understand a bit. As you may recall from Chapter 1.2,
data is stored in memory through collections of bits. There are 8 bits in a byte and an integer consists of 4
bytes (32 bits). With computers, we represent numbers in binary (base 2 where the only possible values are
0 and 1), decimal (base 10 where the only possible values are 0...9), and hexadecimal (base 16 where the
possible values are 0...9, A...F). Consider, for example, the binary value 00101010. The right-most bit
corresponds to 2°, the next corresponds to 2', and the next corresponds to 2°. Thus 00101010 is:

27 20 2° 24 23 22 2! 20
0 0 1 0 1 0 1 0
0O +0+ 32+ 0+ 8+ 0+ 2 + 0=42

In other words, each place has a value corresponding to it (as a power of two because we are counting in
binary). You add that value to the sum only if there is a 1 in that place. This is how we conver the binary
00101010 in the decimal 42. Hexadecimal is similar to decimal except we are storing a nibble (4 bits for 2*
possible values) into a single digit. Thus there are 3 ways to count to 16, the binary way, the decimal way,
and the hexadecimal way:

Binary 0000 0001 ee10 0011 0100 0101 0116 0111 1000 1001 1010 1011 1100 1101 1110 1111 10000
Decimal o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hexadecimal 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0Ox08 Ox09 Ox0A OxOB OxOC Ox0D OxOFE Ox0F 0x1e

In many ways, a byte is an array of eight bits. Since each bit stores a true/false value (similar to a bool), we
should be able to store eight Boolean values in a single byte. The problem, however, is that computers find it
easier to work with bytes rather than bits (hence sizeof(bool) == 1). Wouldn’t it be great if we could access
individual bits in a byte? We can with bitwise operators.

Bitwise operators allow us to perform Boolean algebra not on Boolean variables but on individual bits. We
have six bitwise operators:

Operator Description ~ Example

~ Bitwise NOT 0101 == ~1010

& Bitwise AND 1000 == 1100 & 1010
| Bitwise OR 1110 == 1100 | 1010
" Bitwise XOR 9110 == 1100 ~ 1010
<« Left shift 0110 == 0011 << 1
>> Right shift 0110 == 1100 >> 1

One common use of bitwise operators is to collapse a collection of Boolean values into a single integer. If, for
example, we have a variable called settings containing these values, then we can turn on bits in settings with
the bitwise OR operator |. We can then determine if a setting is on with the bitwise AND operator &.

Page 294 | 3.5 Advanced Conditionals | Unit 3: Pointers & Arrays | Procedural Programming in C++

Consider, for example, the following daily tasks Sue may need to do during her morning routine:

#tdefine takeShower ox01
t#tdefine eatBreakfast 0x02
#tdefine getDressed ox04
#tdefine driveToSchool ©x08 // observe how each literal refers to a single bit
#define driveToChurch ©x10
#tdefine goToClass 0x20
#define doHomework ox40
#define goOnHike ox80

Observe how each value corresponds to turning on a single bit. We can next identify common tasks:

#define weekDayRoutine = takeShower | eatBreakfast |

getDressed | driveToSchool |

doHomework // use the bitwise OR
#define saturdayRoutine = eatBreakfast | getDressed | // to combine settings.

goOnHike // This will set many
#define sundayRoutine = takeShower | eatBreakfast | // individual bits

getDressed | driveChurch

With the bitwise OR operator, we are adding individual bits to the resulting value. Now when the code
attempts to perform these tasks, we use the bitwise AND to see if the bits are set:

{

unsigned char setting = sundayRoutine;

// take a shower?

if (setting & takeShower) // use the bitwise AND to check
goTakeAShower(); // if an individual bit
// is set. Be careful to
// eat breakfast? // not use the && here.. it
if (setting & eatBreakfast) // will always evaluate
goEatBreakfast(); // to TRUE

// get dressed?
if (setting & getDressed)
goGetDressed();

}

Bitwise operators are rarely used in typical programming scenarios. They can be seen in system programming
where programs are talking to hardware devices that use individual bits for control and status reporting.
However, when you encounter them, you should be familiar with what they do. ,

It turns out that we could have been using bitwise operators since the very beginning of the
semester. Remember how we format floating point numbers for output:

cout.setf(ios::fixed);

cout.setf(ios: :showpoint);
cout.precision(2);

It turns out that the setf() method of cout uses bitwise operators to set configuration data:

cout.setf(ios::fixed | ios::showpoint);
cout.precision(2);

Since ios::fixed == 4 (2%) and ios: :showpoint == 1024 (2'°), we could also be truly cryptic and say:

cout.setf((std::ios_base::fmtflags)1028); // need to cast it to fmtflags
cout.precision(2);

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.5 Advanced Conditionals | Page 295

Example 3.5 - Show Bits

This example will demonstrate how to look at the individual bits of a variable. This will be accomplished
by looping through all 32 bits of an integer, masking away each individual bit with the bitwise and &
operator.

ownd(

Write a program to display the bits of a number, one at a time.

Please enter a positive integer: 42
The bits are: 00000000000000000000000000101010

w[qoIJ

The first step to solving this problem is to create a number (called mask) with a single bit in the left-
most place. When this mask is bitwise ANDed against the target number (mask & value), the resulting
expression will evaluate to true only if there is a 1 in that place in the target number. Next, the 1 in the
mask is shifted to the right by one space (mask = mask >> 1) and the process is repeated.

/***************************************

* DISPLAY BITS
* Display the bits corresponding to an integer

gj ***************************************/
g void displayBits(unsigned int value)
bt o {
8 unsigned int mask = ©x80000000; // only the left-most bit is set

for (int bit = 31; bit >= @; bit--) // go through all 32 bits

{

cout << ((mask & value) ? '1' : '@'); // check the current bit
mask = mask >> 1; // shift the mask by one space
}
cout << endl;
}

9_ As a challenge, make a char version of the above function. How big must the mask be? How many bits
N will it have to loop through:?
o
=
a9
(¢}
"<l The complete solution is available at 3-5-showBits.cpp or: e
o
E /home/cs124/examples/3-5-showBits.cpp
«»
o

Page 296 | 3.5 Advanced Conditionals | Unit 3: Pointers & Arrays | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/3-5-showBits.html
https://video.byui.edu/media/3.5+Advanced+Conditionals+-+Show+Bits/0_ebbp24r4

Problem 1

What is the output of the following code?

: 2 b | c | d |

int a= 0,

int b= 1;

int * c = &b;

*c = 2;

int * d = &a;

b 3;

d = &b;

*d = 4;

cout << "b == " << b << endl;

Answer:

Please see page 258 for a hint.

Problem 2

What is the output of the following code?
{

char a[]
char b[]
char * c;

"Banana";
"Bread";

if (a == b)
c = a;
else
c = b;

cout << c << endl;

Answer:

Please see page 277 for a hint.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.5 Advanced Conditionals | Page 297

Problem 3

What is the output of the following code?
{

int number = 5;

switch (number)
{
case 4:
cout << "four!\n";
break;
case 5:
cout << "fivel!\n";
break;
case 6:
cout << "six!\n";
break;
default:
cout << "unknown!\n";

Answer:

Please see page 285 for a hint.

Problem 4

What is the syntax error in the following code?

{
int input = 20;

switch (input)

case 'a':
cout << "Al\n";
break;

case true:
cout << "B!\n";
break;

case 2.0:
cout << "CI\n";
break;

default:
cout << "unknown!\n";

Answer:

Please see page 287 for a hint.

Page 298 | 3.5 Advanced Conditionals | Unit 3: Pointers & Arrays

Procedural Programming in C++

Problem 5

What is the output of the following code?

{
float gradel = 3.7;
int grade2 = 60;
switch ((int)(gradel * 2.0))
case 8:
grade2 += 5;
case 7:
grade2 += 5;
case 6:
grade2 += 5;
case 5:
grade2 += 5;
case 4:
grade2 += 5;
default:
grade2 += 10;
}
cout << grade2 << endl;
}
Answer:

Please see page 290 for a hint.

Problem 6

Write a function that take a letter as input and displays a message on the screen:

A Great job!
B Good work!
C You finished!

All other = Better luck next time

Answer:

Please see page 285 for a hint.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | 3.5 Advanced Conditionals | Page 299

The purpose of this assignment is to demonstrate switch statements and conditional operators. Though of
course it is possible to complete this assignment without using either, it will defeat its purpose.

Your assignment is to write two functions (computeLetterGrade() and computeGradeSign()) and a single
driver program to test them.

computeLetterGrade

Write a function to return the letter grade from a number grade. The input will be an integer, the number
grade. The output will be a character, the letter grade. You must use a switch statement for this function.
Please see the syllabus for the meaning behind the various letter grades.

computeGradeSign

Write another function to return the grade sign (+ or -) from a number grade. The input will be the same
as with computeLetterGrade() and the output will be a character. If there is no grade sign for a number
grade like 85% =B, then return the symbol ‘“*’. You must use at least one conditional expression. Please
see the syllabus for the exact rules for applying the grade sign.

Driver Program
Create a main() that prompts the user for a number graded then displays the letter grade.

Example

Three examples... The user input is underlined.

Example 1: 81%

Enter number grade: 81
81% is B-

Example 2: 97%

Enter number grade: 97
97% is A

Example 3: 77%

Enter number grade: 77
77% is C+

Assignment
The test bed is available at:

testBed cs124/assign35 assignment35.cpp

Don’t forget to submit your assignment with the name “Assignment 35” in the header.

Please see page 49 for a hint.

Page 300 | 3.5 Advanced Conditionals | Unit 3: Pointers & Arrays | Procedural Programming in C++

Unit 3. Pointers & Arrays

Unit 3 Practice Test

We are all habitual writers; our word choice and the way we phrase things are highly individualistic. Write
a program to count the frequency of a given letter in a file.

Example

Given a file that contains the sample solution for this problem, count the frequency of usage of a given
letter in the file.

User input is underlined.
What is the name of the file: /home/cs124/tests/practice33.cpp

What letter should we count: t
There are 125 t's in the file

Another execution on the same file:

What is the name of the file: /home/cs124/tests/practice33.cpp
What letter should we count: i
There are 66 i's in the file

Assignment

Write the program to:

e Prompt the user for the filename

e Read the data from the file one letter at a time
e Compare each letter against the target letter

e Display the count of instances on the screen

e Use proper modularization of course.

Please use the following test bed to validate your answers:
testBed csl124/practice33 practice33.cpp
You can validate your answers against:

/home/cs124/tests/practice33.cpp

Continued on the next page

Procedural Programming in C++ | Unit 3: Pointers & Arrays | Unit 3 Practice Test | Page 301

Grading for Test 3

Sample grading criteria:

Syntax of the
array
30%

File interface
30%

Problem
solving
20%

Modularization
10%

Programming
Style
10%

Exceptional

100%

All references of
the array are
elegant and
optimal

Solution is elegant
and efficient

Solution is elegant
and efficient

Functional
cohesion and
loose coupling is
used throughout

Well commented,
meaningful
variable names,
effective use of
blank lines

Array correctly
declared and
referenced

All the data is read
and error checking
is performed

Zero test bed errors

Zero bugs with
function syntax but
there exist
modularization
errors

Zero style checker
errors

Acceptable
70%
One bug exists

Able to open the
file and read from
it

There exist only
one or two flaws
in the approach
to solve the
problem

One bug exists in
the syntax or use
of a function

One or two minor
style checker
errors

Continued from previous page

Developing
50%
Two or more
bugs

Elements of
the solution are
present
Elements of
the solution are
present

Two or more
bugs

Code is
readable, but
serious style
infractions

Missing

0%

An array was
not used in the
problem

No attempt
was made to
open the file
Input and
output do not
resemble the
problem

All the code
exists in one
function

No evidence of
the principles
of elements of
style in the
program

Page 302 |

Unit 3 Practice Test |

Unit 3: Pointers & Arrays |

Procedural Programming in C++

Unit 3 Project : MadLib

Write a program to implement Mad Lib®. According to Wikipedia,

Mad Libs is a word game where one player prompts another for a list of words to substitute for blanks in a
story; these word substitutions have a humorous effect when the resulting story is then read aloud.

The program will prompt the user for the file that describes the Mad Lib®, and then prompt him for all the
substitute words. When all the prompts are complete, the program will display the completed story on the
screen.

This project will be done in three phases:

e Project 08 : Design the MadLib program
e Project 09 : Read the file and display all the prompts to the user
e Project 10 : Display a MadLib for a given file and set of user input

Interface Design

The program will prompt the user for the filename of his Mad Lib®, allow him to play the game, then ask
the user if he/she wants to play another. Consider the following Mad Lib® with the filename madlibZoo. txt:

Zoos are places where wild :plural_noun are kept in pens or cages :! so

that :plural_noun can come and look at them :. There is a zoo :! in the park
beside the :type_of_liquid fountain :. When it is feeding time, :! all

the animals make :adjective noises. The elephant goes :< :funny_noise

:> :! and the turtledoves go :< :another_funny_noise :. :> My favorite
animal is the :! :adjective :animal :, so fast it can outrun a/an
:another_animal :. :! You never know what you will find at the zoo :.

An example of the output is:

Please enter the filename of the Mad Lib: madlibZoo.txt
Plural noun: boys
Plural noun: girls
Type of liquid: lemonade
Adjective: fuzzy
Funny noise: squeak
Another funny noise: snort
Adjective: hungry
Animal: mouse
Another animal: blue-fin tuna

Zoos are places where wild boys are kept in pens or cages

so that girls can come and look at them. There is a zoo

in the park beside the lemonade fountain. When it is feeding time,
all the animals make fuzzy noises. The elephant goes "squeak”

and the turtledoves go "snort." My favorite animal is the

hungry mouse, so fast it can outrun a/an blue-fin tuna.

You never know what you will find at the zoo.

Do you want to play again (y/n)? n
Thank you for playing.

Note that there is a tab before each of the questions (ex: “Plural noun:”)

Procedural Programming in C++ | Unit 3: Pointers & Arrays | Unit 3 Project : MadLib | Page 303

€ N

File Format

Consider the following user’s file called madLibExample.txt:

his is one line with a newline at the end. :!

Here we have a comma :, and a period :. :!

We can have :< quotes around our text :> if we want :!

This will prompt for :< My favorite cat :> is :my_favorite_cat :. :!

Notice the following traits of the file:

Your

Every word, keyword, or punctuation is separated by a space or a newline. These are called tokens.
Tokens have a colon before them. They are:

! Newline character. No space before or after.

< Open double quotes. No space after.

> Close double quotes. No space before.
Period. No space before.

. Comma. No space before.

anything else A prompt

It a prompt is encountered, convert the text inside the prompt to a more human-readable form. This

means:
1. Sentence-case the text, meaning capitalize the first letter and convert the rest to lowercase.
2. Convert underscores to spaces.
3. Proceed the prompt with a tab.
4. Puta colon and a space at the end.
5. The user’s response to the text could include spaces.

program will not need to be able to handle files of unlimited length. The file should have the following

properties (though you will need to do error-checking to make sure):

Hint

Hint
or th

There are no more than 1024 characters total in the file.
There are no more than 32 lines in the file.

Each line has no more than 80 characters in it.

There are no more than 256 words in the file.

Each word is no more than 32 characters in length.

: to see how to declare and pass an array of strings, please see page 227.

: when displaying the story, you will need to re-insert spaces between each word. Either the word before
e word after a given space negotiate whether there is a space between the words. This means that either

word can remove the space.

Page 304 | DProject 3: MadLib | Unit 3: Pointers & Arrays | Procedural Programming in C++

Project 08

The first part of the project is the design document. This consists of three parts:
I. Create a structure chart describing the entire Mad Lib® program.

2. Write the pseudocode for the function readfile a function to read the Mad Lib® file into some data
structure (examples: a string, and array of something). You will need to include the logic for reading
the entire story into the data-structure and describe how the story will be stored.

3. Write the pseudocode for the function askQuestion. This need to describe how to turn
":grandma's_name" into "\tGrandma's name: " and also describe how to put the user’s response back
into the story. If, for example, the file had the tags “:favorite_car” and “:first_pet's_name” then the
tollowing output would result:

Favorite car: Ariel Atom 3
First pet's name: Midnight

On campus students are required to attach this rubric to your design document. Please self-grade.

Procedural Programming in C++ | Unit 3: Pointers & Arrays | Unit 3 Project : MadLib | Page 305

https://content.byui.edu/file/26c8ce4d-40b2-44ba-9985-526198d35faa/1/124.Project%203%20-%20Rubric.pdf

¢ nun

Project 09

The second part of the Mad Lib project (the first part being the design document due earlier) is to write the
code necessary read the Mad Lib from a file and prompt the user:

Please enter the filename of the Mad Lib: madlibZoo.txt
Plural noun: boys
Plural noun: girls
Type of liquid: lemonade
Adjective: fuzzy
Funny noise: squeak
Another funny noise: snort
Adjective: hungry
Animal: mouse
Another animal: blue-fin tuna

Note that there is a tab before each of the questions (ex: "Plural noun:"):

Hints

Your program will not need to be able to handle files of unlimited length. The file should have the
tollowing properties (though you will need to do error-checking to make sure):

There are no more than 1024 characters total in the file.

There are no more than 32 lines in the file.

Each line has no more than 80 characters in it.

There are no more than 256 words in the file.

Each word is no more than 32 characters in length.

Hint: To see how to declare and pass an array of strings, please see Chapter 3.0 of the text.

Assignment

Perhaps the easiest way to do this is in a four-step process:

1.

2.

Create the framework for the program using stub functions based on the structure chart from your
design document.

Write each function. Test them individually before "hooking them up" to the rest of the program. You
are not allowed to use the String Class for this problem; only c-strings!

Verify your solution with testBed:

testBed cs124/project@9 project09.cpp

Submit it with "Project @9, Mad Lib" in the program header.

An executable version of the project is available at:

/home/cs124/projects/prje9.out

Page 306 | DProject 3: MadLib | Unit 3: Pointers & Arrays | Procedural Programming in C++

Project 10
The final part of the Mad Lib project is to write the code necessary to make the Mad Lib appear on the screen:

Please enter the filename of the Mad Lib: madlibZoo.txt
Plural noun: boys
Plural noun: girls
Type of liquid: lemonade
Adjective: fuzzy
Funny noise: squeak
Another funny noise: snort
Adjective: hungry
Animal: mouse
Another animal: blue-fin tuna

Zoos are places where wild boys are kept in pens or cages

so that girls can come and look at them. There is a zoo

in the park beside the lemonade fountain. When it is feeding time,
all the animals make fuzzy noises. The elephant goes "squeak"

and the turtledoves go "snort." My favorite animal is the

hungry mouse, so fast it can outrun a/an blue-fin tuna.

You never know what you will find at the zoo.

Do you want to play again (y/n)? n
Thank you for playing.

Hints

A few hints to make the code writing a bit easier:

e The best way to store the story is in an array of words. Thus the process of reading the story from
the file removes all spaces from the story.

e By default, you insert a space before each word when you display the story. The only conditions
when a space is not inserted is when the preceding character is a open quote or a newline, or when
the following character is a closed quote, period, or comma. In other words, do not think about
removing spaces, but rather about adding them when conditions are right.

* Your program will need to be able to play any number of Mad Lib games. The easiest way to handle
this is to have a while loop in main()

Assignment

Perhaps the easiest way to do this is in a five-step process:

1. Start with the code from Project 09.

2. Fix any necessary bugs.

3. Write the code to display the Mad Lib on the screen.
4. Verify your solution with testBed:

testBed cs124/projectl® projectld.cpp

5. Submit it with "Project 10, Mad Lib" in the program header.

An executable version of the project is available at:

/home/cs124/projects/prjle.out

Procedural Programming in C++ | Unit 3: Pointers & Arrays | Unit 3 Project : MadLib | Page 307

Page 308

4.0 Multi-Dimensional ATTaYS.......c..cooveiiiiiirienieiienieseeeee e e 309

4.1 Allocating MEmOLYccoooiiiiiiiiiiiiiiic i 324
4.2 String ClaSs.....ccvoiiiiiiiiiiiii 337
4.3 ComMMANA LLINC.....uuuuuiieieeieetiee s ssnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 346
7 ot g iia a1 1 U (o) o NN 356
Unit 4 Practice TeStoooiiiiiiii i 361
Unit 4 Project 1 SUAOKUcc.oiiiiiiiiiiiiice e 363

Unit 3 Practice Test | Unit 4: Advanced Topics | Procedural Programming in C+ +

Unit 4. Advanced Topics

4.0 Multi-Dimensional Arrays

Sam had so much fun dabbling with ASCII-art that he thought he would try his hand at computer graphics.
The easiest way to get started is to load an image from memory and display it on the screen. This seems
challenging, however; memory (including the type of data stored in an array) is one-dimensional but images
are two-dimensional. How can he store two-dimensional data in an array? How can he convert the one-
dimensional data in a file into this array? While trying to figure this out, Sue introduces him to multi-
dimensional arrays.

Objectives
By the end of this class, you will be able to:

e Declare a multi-dimensional array.
e Pass a multi-dimensional array to a function as a parameter.
e Read multi-dimensional data from a file and put it in an array.

Prerequisites

Before reading this section, please make sure you are able to:

e Declare an array to solve a problem (Chapter 3.0).

e Write a loop to traverse an array (Chapter 3.0).

e Pass an array to a function (Chapter 3.0)

e Write the code to read data from a file (Chapter 2.6).
e Write the code to write data to a file (Chapter 2.6).

Overview

Often we work with data that is inherently multi-dimensional. A few common examples include pictures (row
and column), coordinates (latitude, longitude, and altitude), and position on a grid (x and y). The challenge
arises when we need to store the multi-dimensional data in a memory store that is inherently one dimensional.

«+
g
)

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.0 Multi-Dimensional Arrays | Page 309

Consider the following code to put the numbers 0-15 on the screen:

for (int index = 0; index < 16; index++)
cout << index << '"\t';
cout << endl;

Observe how the numbers are one-dimensional (just an index). However, we would like to put the numbers
in a nice two-dimensional grid that is 4 X 4. How do we do this? The first step is we need some way to
detect when we are on the 4™ column. When we are on this column, we display a newline character rather
than a white space to properly align the columns.

&&\Q &&x S i
R

) 1 2 3 row 0
4 5 6 7 row 1
8 9 10 11 | row 2
12 13 14 15 | row 3

Are there any patterns in the numbers? Can we find any way to derive the row or column based on the index?
The first thing to realize is that the column numbers seem to increase by one as the index increases by one.
This occurs until we get to the end of the row. When that happens, the column number seems to reset.

index 0 1 2 3 4 5 6 7 8 9 |10 |11 |12 | 13 | 14 | 15
column 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

This pattern should be familiar. As we divide the index (index) by the number of columns (numcol), the
remainder appears to be the column (column) value.

column = index % numCol;

The row value appears to be an entirely different equation. We increment the row value only after we
increment four index values:

index 0 1 2 3 4 5 6 7 8 9 |10 |11 |12 | 13 | 14 | 15
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

This pattern is also familiar. We can derive row by performing integer division on index by numCol:

row = index / numCol;

Based on these observations, we can re-write our loop to display the first 16 whole numbers:

for (int index = 0; index < 16; index++)
cout << index << (index % 4 == 3 ? '\n' : "\t');

In other words, when the column value (index % 4) is equal to the fourth column (== 3) then display a
newline character ('\n") rather than the tab character (*\t'). We can re-write this more generally as:

/R stk ok sk ok skok sk sk ok skok ok skok sk sk sk ok skok stk ok skok ok skok sk sk skok ok ok ok
* DISPLAY NUMBERS
* Display the first ‘number’ whole numbers

* neatly divided into a grid of numCol columns
stokokskok sk ok skl ok skok stk ok skl sk sk stk ko ok skok sk skok ok sk skok ok skokok sk ok /

void displayNumbers(int number, int numCol)

{
for (int index = ©; index < number; index++) // one dimensional index
cout << index // display the index
<< (index % numCol == numCol - 1 ? "\n' : "\t'); // break into rows
}

Page 310 | 4.0 Multi-Dimensional Arrays | Unit 4: Advanced Topics | Procedural Programming in C+ +

After converting an inherently one-dimensional value (index) into a two-dimensional pair (row & column),
how do we convert two-dimensional values back into an index? To accomplish this, we need to recall the
things we learned when going the other way:

e Anincrease in the index value yields an increase in the column value. To turn this around, we could
also say that an increase in the column value yields an increase in the index value.

e The row value changes one fourth (1 / numcCol) as often as the index value. To turn this around, a
change in the row value yields a jump in the index value by four (numcol).

We can combine both these principles in a single equation:

index = row * 4 + column;

Check this equation for correctness:

index 0 1 2 3 4 5 6 7 8 9 |10 |11)12 |13 |14 | 15
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
column 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

If we add one to the row, then the index jumps by four. If we add one to the column, the index jumps by one.
Thus we have the ability to convert two-dimensional coordinates (row & column) into a one dimensional value
(index). The general form of this equation (worth memorizing) is:

index = row * numCol + column;

Why would we ever want to do this? Consider the scenario when we want to put the multiplication tables
tor the values 0 through 3 in an array. This can be accomplished with:

{
int grid[4 * 4]; // the area of the array is the width
// times the height.
for (int row = ©; row < 4; row++) // rows first, 0...3
for (int col = @; col < 4; col++) // columns next, also 0...3
grid[row * 4 + col] = row * col; // convert to row,col to index for the []
} // the right-side is the product

In memory, the resulting grid array appears as the following:

row 0 row 1 row 2 row 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
grid © 6,06 |/0 0© 1|23 /06,2/4/ 6|03 6|9

In both of these cases (converting 2-dimensional to 1 and converting 1-dimensional to 2), the same piece of
information is needed: the number of columns (numcol) in the data. This should make sense. If you have 32
items in a data-set, is the grid 1X32 or 2X16 or 4x8 or 8X4 or 16 X2 or 32x1? Each of these possibilities
is equally likely. One must know either the number of columns or the number of rows to make the conversion.

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.0 Multi-Dimensional Arrays | Page 311

Syntax

As you may have noticed, multi-dimensional arrays are quite commonly needed to solve programming
problems. Similarly, the conversion from index to coordinates and back is tedious and overly complicated.
Fortunately, there is an easier way:

Declaring an arra Referencing an arra Passing as a parameter

Syntax: Syntax: Syntax:
<Type> <name>[index][index] (<Type> <name>[][size])
<name>[size][size]
Example: Example:
Example: — - -
cout << data[i][j]; void func(int
int data[200][15]; data[][15])
A few details:
A few details: A few details:

e The index starts with 0 and

* Any data-type can be used. must be within the valid

* You must specify the base-

e The size must be a natural range. type.
number {1, 2, etc.} and not a * No size is passed in the
variable. square brackets [].

Declaring an array

Multi-dimensional arrays are declared by specifying the base-type and the size of each dimension. The basic
syntax is:

<base-type> <variable>[<number of rows>][<number of columns>];
A grid of integers that is 3 X 4 can be declared as:
int grid[4][3];

We can also initialize a multi-dimensional array at declaration time. The best way to think of the initialization
syntax is “an array of arrays.” Consider the following example:

{
int grid[4][3] =
{// col @ 1 2

{ 8, 12, -5 }: // row @
{ 421, 4,153}, // rowl
{ -15, 20, 91}, // row 2
{ 4, -15, 182}, // row 3
¥
}
~ e
:’ T
“ B Notice how the horizontal dimension comes second in multi-dimensional arrays. In Geometry,

we learned to specify coordinates as (X, Y) where the horizontal dimension comes first. Multi-
dimensional arrays are the opposite! Rather than trying to re-learn (Y, X) (which just doesn’t
teel right, does it?), it is more convenient to use (Row, Column) as our array dimensions.

Storing a digital image is a slightly more complex example. Each pixel consists of three values (red, green,
and blue) with 256 possible values in each (char). The pixels themselves are arrayed in a two-dimensional
image (4,000 x 3,000). The resulting declaration is:

Page 312 | 4.0 Multi-Dimensional Arrays | Unit 4: Advanced Topics | Procedural Programming in C+ +

char image[3][3000][4000];

In this example, each element is a char (eight bits in a byte so there are 2° possible values). The first dimension
([3]) 1s for the three channels (red, green, and blue). The next is the horizontal size of the image (4,000). The

tinal dimension is the vertical dimension (3,000). The total size of the image is:
int size = sizeof(char) * sizeof(3) * sizeof(3000) * sizeof(4000);

This is 36,000,000 bytes of data (34.33 megabytes). A twelve mega-pixel image is rather large!

Referencing an array

When referencing an array, it is important to specify each of the dimensions. Again, we use the vertical
dimension first so we use (Row, Column) variables rather than (X, Y). Back to our 3 X 4 grid example:

{
int grid[4][3] =
{// col o 1 2
{ 8, 12, -513}, // row
{ 421, 4, 153}, // row
{ -15, 20, 91}, // row
{ 4, -15, 182 }, // row

wNER, o

3

int row; // vertical dimension
int col; // horizontal dimension

cout << "Specify the coordinates (X, Y) "; // people think in terms of X,Y
cin >> col >> row;

assert(row >= 0 & row < 4); // a loop would be a better tool here

assert(col >= 0 & & col < 3); // always check before indexing into
// an array

cout << grid[row][col] << endl;

}

Working with more than two-dimensions is the same. Back to our image example consisting of a two-
dimensional grid of pixels (4,000 x 3,000) where each pixel has three values. If the user wishes to find the
value of the top-left pixel, then the following code would be required:

cout << "red: " << image[@][0@][0] << endl
<< "green: " << image[1][0@][@] << endl
<< "blue: " << image[2][@][@] << endl;

Passing as a parameter

Passing arrays as parameters works much the same for multi-dimensional arrays as they do for their single-
dimensional brethren. There is one important exception, however. Recall from earlier in the semester
(Chapter 3.0) that arrays are just pointers to the first item in the list. Only having this pointer, the callee does
not know the length of the buffer. For this reason, it is important to pass the size of the array as a parameter.

There is another important component to understanding multi-dimensional array parameters. Recall that, for
a given 32 slots in memory, there may be many possible ways to convert it into a two-dimensional grid { (32
x 1), (16 X2), (8 X 4), (4 x 8), (2 x 16), 0r (1 x 32) }. The only way to know which conversion is correct
is to know the number of columns (typically called the numcol variable). This information is essential to
performing the conversion.

When using the double-square-bracket notation for multi-dimensional arrays (array[3][4] instead of array[3
* numCol + 41), the compiler needs to know the numcol value. The same is true when passing multi-dimensional

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.0 Multi-Dimensional Arrays | Page 313

arrays as parameters. In this case, we specify the size of all the dimensions except the left-most dimension.
Back to our 3 X 4 example, a prototype might be:

void displayGrid(int array[][3]); // column size must be present

Back to our image example, the following code will fill the image with data from a file.

/***************************************

* READ IMAGE

* Read the image data from a file
***************************************/

bool readImage(unsigned char image[][3000][4000], // specify all dimensions but first

const char fileName[]) // also need the filename as const
{
// open stream
ifstream fin(fileName);
if (fin.fail()) // never forget error checking
return false; // return and report
bool success = true; // our return value
// read the grid of data
for (int row = ©; row < 3000; row++) // rows are always first
for (int col = 0@; col < 4000; col++) // then columns
for (int color = 0; color < 3; color++) // three color dimensions: r, g, b
{
int input; // data in the file is a number so
fin >> input; // we read it as an integer
if (input < @ || input >= 256 || // before storing it as a
fin.fail()) // char (a small integer). Make
success = false; // sure it is valid!
image[color][row][col] = input;
}
// paranoia!
if (fin.fail()) // report if anything bad happened
success = false;
// make like a tree
fin.close(); // never forget to close the file
return success;
}
/R sk sk ok sk skok sk sk sk sk sk skt sk skl sk skok sk ok ok
* MAIN

* Simple driver for readImage
stk ok skok stk ok skok sk skok koo skl sk kok sk ok sk skok ok ko ok ok /

int main()
{
unsigned char image[3][3000][4000]; // 12 megapixel image
if (!readImage(image, "image.bmp")) // .bmp images are just arrays
return 1; // of pixels! Note that they
else // are binary files, not text
return 0; // files so this will not quite
} // work the way you expect...

One quick disclaimer about the above example... Images are stored not as text files (which can be opened
and read in emacs) but as binary files (such as a.out. Try opening it in emacs to see what I mean). To make

this above example work, we will need to create 36 million integers (3 x 3,000 x 4,000), each of which with
a value between 0 and 255. That might take a bit of patience.

Page 314 | 4.0 Multi-Dimensional Arrays | Unit 4: Advanced Topics | Procedural Programming in C+ +

oun(

Example 4.0 - Array of Strings

This example will demonstrate how to create, pass to a function, and manipulate an array of strings.
This is a multi-dimensional array of characters.

oS

uonn

Since strings are arrays, to have an array of strings we will need a two dimensional array. Note that the
tirst dimension must be the number of strings and the second the size of each.

/***

* PROMPT NAMES
* Prompt the user for his or her name
***/
void promptNames(char names[][256]) // the column dimension must be the
{ // buffer size
// prompt for name (first, middle, last)
cout << "What is your first name? ";

cin >> names[0]; // passing one instance of the array
cout << "What is your middle name? "; // of names to the function CIN
cin >> names[1]; // Note that the data type is
cout << "What is your last name? "; // a pointer to a character,
cin >> names[2]; // what CIN expects

}

/***

* MAIN

* Just a silly demo program
***/

int main()
{
char names[3][256]; // arrays of strings are multi-
// dimensional arrays of chars
// fill the array
promptNames (names); // pass the entire array of strings
// first name:
cout << names[@] << endl; // this is an array of characters
// middle initial
cout << names[1][@] << endl; // first letter of second string

// loop through the names for output
for (int i = 0; i < 3; i++)
cout << names[i] << endl;

return 0;

As a challenge, extend the names array to include an individual’s title. Thus the promptNames() function
will consider the fourth row in the names array to be the title. You will also need to modify main() so
the output can be displayed.

osTy 99 foSuarreyDn

The complete solution is available at 4-0-arrayOfStrings.cpp or: Ty

/home/cs124/examples/4-0-array0OfStrings.cpp

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.0 Multi-Dimensional Arrays | Page 315

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-0-arrayOfStrings.html
https://video.byui.edu/media/4.0+-+Arrays+of+Strings/0_b73da9u0/18442462

Example 4.0 - Array of Integers

@l This example will create a 4 X 4 array of integers. This will be done both the old-fashion way of using
g a single-dimensional array as well as the new double-bracket notation. In both cases, the arrays will be
Sl filled with multiplication tables (row * col).
The 16 items in a 4 X 4 multiplication table represented as a single-dimensional array are:
row 0 row 1 row 2 row 3
I I I I |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
grid e /06 /0|1 2 3|0 2, 4|6,063)|6)9
To write a function to fill this array, two parameters are needed: the number of rows (numRow) and the
number of columns (numcol).
void fillArraylD(int grid[], int numCol, int numRow)
{
for (int row = @; row < numRow; row++)
for (int col = ©; col < numCol; col++)
grid[row * numCol + col] = row * col;
& }
O
g
2. To do the same thing as a multi-dimensional array, the data representation is:
=
‘grid[e][] grid[1][] grid[2][] grid[3][]
0,0 10,1 |0,2|0,3|1,0(1,1)1,2|1,3|2,0|2,12,2)2,3]|3,0]3,1]3,2] 3,3
grid 010|000 |0B0|1]|]2[|3|0]|]2]|]4]|6|0]|3]6
To work with multi-dimensional arrays, the compiler has to know the number of rows in the array.
This means that, unlike with the single-dimensional version, we can only pass the numRow parameter.
The numCol must be an integer literal specified in the parameter.
void fillArray2D(int grid[][4], int numRow)
{
for (int row = ©; row < numRow; row++)
for (int col = @; col < 4; col++)
grid[row][col] = row * col;
}
9 As a challenge, change the program to display a 5 X 6 table. What needs to change in the calling
Nl function? What needs to change in the two fill functions?
5
=
aQ
o
<l The complete solution is available at 4-0-arrayOfIntegers.cpp or: Sy
o
E: /home/cs124/examples/4-0-arrayOfIntegers.cpp
72}
o

Page 316 | 4.0 Multi-Dimensional Arrays | Unit 4: Advanced Topics | Procedural Programming in C+ +

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-0-arrayOfIntegers.html
https://video.byui.edu/media/4.0+-+Arrays+of+Integers/0_pfxe5tyl/18442462

Example 4.0 - Convert Place To Points

@l Recall that there are two main uses for arrays: either they are a “bucket of variables” useful for storing
g lists of items, or they are tables useful for table-lookup scenarios. This example will demonstrate the
SAl table-lookup use for arrays.
Sam can make varsity on the track team if he gets 12 points. There are 10 races and points are awarded
according to his placing:
=
= 1 5
p—
g 2 3
3 2
4 1
We can create a data-driven program to compute how many points Sam will get during the season. If
he gets 12 points and his varsity jacket, possibly Sue will want to go on another date with him!
{
int points = 0; // initial points for the season
int breakdown[4][2] =
{
{1, 5}, // 15t place gets 5 points
{2, 3}, // 2™ place gets 3..
{3, 2},
{4, 1}
s
// Loop through the 10 races in the season
(oﬂ for (int cRace = 0; cRace < 10; cRace++) // “cRace” for “count Race”
—_— {
E-r. // get the place for a given race
] int place;
= cout << "what was your place? ";
cin >> place;
// add the points to the total
for (int cPlace = @; cPlace < 4; cPlace++) // Loop through all the places
if (breakdown[cPlace][@] == place) // if place in the table matches
points += breakdown[cPlace][1]; // assign the points
}
cout << points << endl;
}
Observe how the first column is directly related to the row (breakdown[row][@] == row + 1). This means
we technically do not need to have a multi-dimensional array for this problcm.
9 As a challenge, adapt this solution to the points awarded to the finishers at the Tour de France:
¥}
= 20 (17 |15 |13 (|12 (1@ |9 8 7 6 5 4 3 2 1
(7% In other words, the first finisher wins 20 points, the second 17, and so on.
o
*<ll The complete solution is available at 4-0-convertPlaceToPointers.cpp or:
o
E /home/cs124/examples/4-0-convertPlaceToPoints.cpp
@
o

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.0 Multi-Dimensional Arrays | Page 317

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-0-convertPlaceToPoints.html
https://video.byui.edu/media/4.0+-+Convert+Place+to+Points/0_cpypv47q/18442462

Example 4.0 - Read Scores

This example will demonstrate how to fill a multi-dimensional array of numbers from a file, how to
display the contents of the array, and how to process data from the array.

oun(

Write a program to read assignment scores from 10 students, each student completing 5 assignments.
The program will then display the average score for each student and for each assignment. If there were
three students, the file containing the scores might be:

92 87 100 84 95
71 79 85 62 81
95 100 160 92 99

w[qoIJ

The function to read five scores for numstudents individuals is the following:

bool readData(int grades[][5], int numStudents, const char * fileName)
{
ifstream fin(fileName);
if (fin.fail())
return false;

// read the data from the file, one row (student) at a time
for (int iStudent = @; iStudent < numStudents; iStudent++)
{
// read all the data for a given student: 5 assignments
for (int iAssign = 0; iAssign < 5; iAssign++)
fin >> grades[iStudent][iAssign];

oS

if (fin.fail())

uonn

fin.close();
return false;

}

fin.close();
return true;

}

Observe how two loops are required: the outter loop iStudent to go through all the students in the list.
The inner loop iAssign reads all the scores for a given student.

As a challenge, modify the above program and the associated data file to contain 6 scores for each
student. What needs to change? Can you create a #define to make changes like this easier?

The complete solution is available at 4-0-readScores.cpp or: X hz

/home/cs124/examples/4-0-readScores.cpp

osTy 39 foSuarreyDn

Page 318 | 4.0 Multi-Dimensional Arrays | Unit 4: Advanced Topics | Procedural Programming in C+ +

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-0-readScores.html
https://video.byui.edu/media/4.0+-+Read+Scores/0_oh8losfl/18442462

wR[qoIJ

[0S

uonn

OS[Y 92§

Example 4.0 - Pascal’s Triangle

Pascal’s triangle is a triangular array of numbers where each value is the sum of the two numbers “above”

1t:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Consider the number 6 in the second from bottom row. It is the sum of the 3 and the 3 from the
preceding row. For a graphical representation of this relationship, please see this animation.

We will implement Pascal’s triangle by turning the triangle on its side:

1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11
1 3 6 10 15 21 28 36 45 55 66
1 4 10 20 35 56 84 120 165 220 286
1 5 15 35 70 126 210 330 495 715 lo01
1 6 21 56 126 252 462 792 1287 2002 3003
1 7 28 84 210 462 924 1716 3003 5005 8008
1 8 36 120 330 792 1716 3432 6435 11440 19448
1 9 45 165 495 1287 3003 6435 12870 24310 43758
1 10 55 220 715 2002 5005 11440 24310 48620 92378
1 11 66 286 1e01 3003 8008 19448 43758 92378 184756

One the first row, the values are 1, 1, 1, etc. From here, the first item on each new row is also the value
1. Every other item is the sum of the previous row and the previous column.

void fill(int grid[][SIZE])

{
// 1. fill the first row
for (int column = @; column < SIZE; column++)
grid[@][column] = 1;
for (int row = 1; row < SIZE; row++)
{
// 2. The first item on a new row is 1
grid[row][0] = 1;
// 3. Every other item is the sum of the item above and to the left
for (int column = 1; column < SIZE; column++)
grid[row][column] = grid[row - 1][column] + grid[row][column - 1];
}
}

The complete solution is available at 4-0-pascalsTriangle.cpp or:

/home/cs124/examples/4-0-pascalsTriangle.cpp

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.0 Multi-Dimensional Arrays | Page 319

Unit 4

http://upload.wikimedia.org/wikipedia/commons/0/0d/PascalTriangleAnimated2.gif
https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-0-pascalsTriangle.html
https://video.byui.edu/media/4.0+-+Pascals+Triangle/0_66752v36/18442462

Problem 1

What is returned if the input is 822

char convert(int input)

{
char letters[] = "ABCDF";

int minRange[] =
{90, 80, 70, 60, 0};

for (int 1 = 0; i < 5; i++)
if (minRange[i] <= input)
return letters[i];

return 'F';

Answer:

Please see page 218 for a hint.

Problem 2

What is the output of the following code?

int num(int n, float * a)

{
int s = 0;
for (int i = 0; i < n; i++)

s += (a[i] >= 80.90);

return s;

}

int main()

{
cout << num(5, {71.3, 84.7, 63.9, 99.8, 70})

<< endl;

return 0;

}

Answer:

Please see page 223 for a hint.

Page 320 | 4.0 Multi-Dimensional Arrays | Unit 4: Advanced Topics | Procedural Programming in C+ +

Problem 3

What is the output of the following code?

{
char a[8] = "Rexburg";
bool b[8] =
{true, false, true, true,
false, true, true, false};
for (int 1 = 0; i < 8; i++)
if (b[i])
cout << a[i];
cout << endl;
¥
Answer:

Please see page 218 for a hint.

Problem 4

What is the syntax error?

{

char letter = 'a’;

switch (letter)
{

case 'a':
cout << "A\n";
case true:
cout << "BI\n";
break;
break;
case 1:
cout << "C!\n";
break;

Answer:

Please see page 287 for a hint.

Problem 5

Declare a variable to represent a Sudoku board:

Please see page 49 for a hint.

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.0 Multi-Dimensional Arrays | Page 321

Problem 6

What is wrong with each of the following array declarations?

int x = 6;
int array[x][x];

const float x = 1;
int array[x]

int array[][]

int array[6 * 5 + 2][4 / 2];

Please see page 215 for a hint.

Problem 7

What is the output of the following code fragment?

{
int array[2][2] =
{ {3, 4}, {1, 2} };
cout << array[1][@];
}
Answer:

Please see page 313 for a hint.

Problem 8

Consider an array that is declared with the following code:

int array[7][21];

Write a prototype of a function that will accept this array as a parameter.

Answer:

Please see page 313 for a hint.

Page 322 | 4.0 Multi-Dimensional Arrays | Unit 4: Advanced Topics | Procedural Programming in C+ +

Write a function to read a Tic-Tac-Toe board into an array. The file format is:
X0 .
CX .
The character X’ means that the X” player has taken that square. The character °.” means that the square is
currently unclaimed. There is one space between each symbol.
Note: You will need to store the results in a 2D array. The function should take the filename as a parameter.

Write a function to display a Tic-Tac-Toe board on the screen. Given the above board, the output is:

Write a function to write the board to a file. The file format is the same as with the read function.

Example

The user input is underlined.
Enter source filename: board.txt

x|o]
_———tm - -

_———tm - -
| x|

Enter destination filename: board2.txt
File written

Assignment
The test bed is available at:

testBed cs124/assign40@ assignment4@.cpp

Don’t forget to submit your assignment with the name “Assignment 40 in the header.

Please see page 234 for a hint.

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.0 Multi-Dimensional Arrays | Page 323

Unit 4. Advanced Topics

4.1 Allocating Memory

After Sam finished his image program involving a multi-dimensional array, something was bothering him.
While the program worked with the current 12 megapixel camera he owns, it will not work with images of
any other size. This struck him as short-sighted; an image program should be able to work with any size
image, even image sizes not known at compile time. In an effort to work around this glaring shortcoming,
he discovers memory allocation.

Objectives
By the end of this class, you will be able to:

e Allocate memory with the new operator.
e Free allocated memory with the delete operator.
e Allocate and free single and multi-dimensional arrays.

Prerequisites

Before reading this section, please make sure you are able to:

e Declare a pointer variable (Chapter 3.3).
e Get the data out of a pointer (Chapter 3.3).
e Dass a pointer to a function (Chapter 3.3).

Overview

Dynamic memory allocation is the process of a program reserving an amount of memory that is known at
runtime rather than at compile time. In other words, the program is able to reserve as much memory as the
user requires, even when the programmer has no idea how much memory that will be.

This is best explained by an analogy. Imagine a developer wishing to purchase an acre of land. He goes to
City Hall to acquire two things: a deed and the address of the land. The deed is a guarantee the land will not
be developed by anyone else, and the address is a pointer to the land so he knows where to find it. If there is
no land available, then he will have to deal with the setback and make other plans. If land is available, the
developer will walk out with a valid address. With this address and deed, the developer goes off to do
something useful and productive with the newly acquired acre. Of course, the acre is not clean. The previous
inhabitant of the land left some landscaping and structures on the land which will need to be removed and
leveled before any building occurs. The developer retains ownership of the land until his business is completed.
At this time, he returns to City Hall and returns the deed and forgets the address of the land.

This process is exactly what happens when working with memory allocation. The program (developer) asks
the operating system (City Hall) for a range of memory (acre of land). If the request is greater than the
amount of available memory, the request returns a failure condition which the program will need to handle.
Otherwise, a pointer to the memory (address) will be given to the program as well as a guarantee that no
other program will be given the same memory (deed). This memory is filled with random 1’s and 0’s from
the previous occupant (landscaping and structures on the land) which will need to be initialized (leveled).
When the program is finished with the memory, it should be returned to the operating system (returns the
deed to City Hall) and the pointer should be set to NuLL (forgets the address).

Page 324 | 4.1 Allocating Memory | Unit 4: Advanced Topics | Procedural Programming in C++

There are three parts to this process:

e NuLL: The empty address indicating a pointer is invalid
e new: The operator used to request memory from the operating system
e delete: The operator used to tell the operating system the memory is no longer needed

NULL Pointer

Up until this point, all the pointers we have used in our programs pointed to an existing location in memory.
This location was always a local variable, meaning we could always assume that the pointer is referring to a
valid location in memory. However, there often arises the occasion when the pointer refers to nothing. This
situation requires us to mark the pointer so we can tell by inspection whether the address is valid.

To illustrate this point, remember our assignment (Assignment 3.2) where we computed the student’s grade.
The important thing about this assignment is that we are not to factor in the assignments the student has yet
to complete. We marked these assignments with a -1 score. In essence, the -1 is a special token indicating the
score is invalid or not yet completed. Thus, by inspection, we can tell if a score is invalid:

if (scores[i] == -1)
cout << "No score for assignment

<< 1 << endl;

The NULL pointer is essentially the same thing: an indication that a given pointer refers to no location in
memory. We can check the validity of a pointer with a “NuLL-check:”

if (p == NULL)
cout << "The pointer does not refer to a valid location in memory\n";

Definition of NULL

The first thing to realize about NULL is that it is an address. While we have created pointers to characters and
pointers to integers, NULL is a pointer to void. This means we can assign NULL to any pointer without error:

{
int * pGrade = NULL; // we can assign NULL to any
float * pAccount = NULL; // type of pointer without
char * name = NULL; // casting

}

The second thing to realize about NULL is that the numeric address is zero. Thus, the definition of NULL is:

#define NULL (void *)0@x00000000

As you can well imagine, choosing zero as the NULL address was done on purpose. All valid memory locations
are guaranteed to be not zero (the operating system owns that location: the first instruction to be executed
when a computer boots). Also, zero is the only false value so NULL is the only false address. This makes doing
a “NuLL-check” easy:

if (p) // same as “if (p != NULL)”
cout << "The address of p is valid!\n";

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.1 Allocating Memory | Page 325

Using NULL

One use of the NnuLL address is to indicate that a pointer is not valid. This can be done when there is nothing
to point to. Consider the following function displaying the highest ‘A’ in a list of numeric grades. While
commonly there is at least one ‘A’ in a list of student grades, it is not always the case.

/*************************************

* DISPLAY HIGHEST A

* Given a list of numeric grades

* for a class, display the highest

* A if one exists
*************************************/

void displayHighestA(const int grades[],

1/

we won’t be changing this so

int num) // the array is a const
{
const int * pHighestA = NULL; // Initially no ‘A’s were found
// find the highest A
for (int count = @; count < num; count++) // loop through all the grades
if (grades[count] >= 99) // only A’s please
{
if (pHighestA == NULL) // if none were found, then any
pHighestA = &(grades[count]); // ‘A’ is the highest
else if (*pHighestA < grades[count]) // otherwise, only the highest if it
pHighestA = &(grades[count]); // is better than any other
}
// output the highest A
if (pHighestA) // classic NULL check: only display the
cout << *pHighestA << endl; // ‘A’ if one was found
else // otherwise (pHighestA == NULL),
cout << "There was not an A\n"; // none was found
}

NULL check

Probably the most common use of NULL is to do a “NuLL-check.” Because we expect our program to be set up
correctly and pointers to always have valid addresses, it is common to add an assert just before dereferencing
a pointer to make sure we won’t crash.

{
char * pLetter = NULL; // first set the pointer to NULL
// to indicate it is uninitialized
if (isalpha(value[@]))
pLetter = value + 0; // observe how pLetter is set in both
else // conditions of the IF statement
pLetter = value + 1;
assert(pLetter != NULL); // like any assert, this should never
cout << "Letter: " // fire unless the programmer made
<< *plLetter // a mistake. It is better to fire
<< endl; // than to crash, of course!
pLetter = NULL; // indicate we are done by setting the
} // pointer back to NULL

If we habitually set our pointers to NULL and then assert just before they are dereferenced, we can catch a ton
of bugs. These bugs are also easy to fix, of course; much easier than a random crash!

Page 326 | 4.1 Allocating Memory | Unit 4: Advanced Topics | Procedural Programming in C++

Allocation with New

When we declare a local variable (also known as a stack variable), the compiler takes care of memory
management. The compiler makes sure that there is memory reserved for the variable as soon as the variable
talls into scope. The compiler also makes sure the memory is freed as soon as the variable falls out of scope.
While this is very convenient, it can also be very limiting: the compiler needs to know the size of the block of
memory to be reserved and how long it will be needed. Memory allocation relaxes both of these constraints.

We request new memory from the operating system with the new operator. The syntax is:
<pointer variable> = new <data-type>;
If, for example, a double is to be allocated, it is accomplished with:

{

double * p; // “p” is a pointer to a double
p = new double; // allocating a double returns a pointer to a double
}
We can also initialize a block of memory at allocation time. The syntax is very similar:
<pointer variable> = new <data-type> (<initialization value>);
If, for example, you wish to allocate a character and initialize it with the letter ‘A’, then:

{
¥

char * p = new char('A");

This does three things: it reserves a byte of memory (sizeof(char) == 1), it initializes that value to 65 ('A' ==
65), and it sends that address to the variable p.

Memory allocation failure

We cannot generally assume that a memory allocation is successful. In other words, it might be the case that
there is no more memory to be had. Our code needs to be able to detect this condition and gracefully handle
the error.

When a new request fails, the resulting pointer is NULL. However, we need to tell new that we wish to be notified
of a failure in terms of the NULL pointer. This is done with the nothrow parameter:

{
int * p = new (nothrow) int; // notice the nothrow parameter
if (p == NULL) // failure comes in the form of a
cout << "Memory allocation failure!\n"; // NULL pointer
}

Every memory allocation should be accompanied by a NuLL check; never assume an allocation succeeded.

There are two ways the new operator reports errors: returning a NULL pointer or throwing an
exception. Since exception handling is a CS 165 topic, we will use the NULL check this semester.

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.1 Allocating Memory | Page 327

Allocating arrays

We allocate arrays much the same way we allocate individual data-types. The difference, of course, is that we
need to tell new how many instances of the data-type are needed. The syntax is:

<array variable> = new <data-type> [<size>];

Note that, unlike with array local variables, the size parameter does not need to be a constant or a literal. In
other words, since new is essentially a function call, the compiler does not need to know how much data will
be allocated; it can be determined at run-time. Consider the following code:

{
// get the size of the text
int size; // memory size variables are integers
do
{
cout << "How long is your name? ";
cin >> size; // continue prompting until the
} // user gives us a positive
while (size <= 0); // size
// allocate the memory
char * text = new(nothrow) char [size + 1]; // allocate one more for \@
if (!text) // same as “if (text != NULL)”
cout << "No memory! This is bad!\n"; // should return because we will
// crash in a minute..
// prompt for the name
cout << "What is your name? ";
cin.getline(text, size + 1); // treat “text” like any other string
}

Freeing with Delete

Once we are finished with a given block of memory, it is important to return it to the operating system so
another program (or part of our own program!) can use it. This is accomplished with the delete operator.
Note that we don’t need to do this with traditional local variables because, once the variable falls out of scope,
the compiler frees it for us. However, with memory allocation, the programmer (not the compiler!) indicates
when the memory is no longer needed.

The syntax for the delete operator is:

delete <pointer variable>;
delete [] <array pointer variable>;

Consider the following example to allocate an integer and a string:

{
int * p = new int; // allocate 4 bytes
char * text = new char[256]; // allocate 256 bytes
delete p; // no []s to free a single slot in memory
delete [] text; // the []s indicate an array is freed.
}
Y
S . .
ﬁ@ﬂ To make sure we don’t try to use newly freed memory, always assign the pointer to NULL after
I delete.

Page 328 | 4.1 Allocating Memory | Unit 4: Advanced Topics | Procedural Programming in C++

Example 4.1 - AllocateValue

In the past, we used pointers to refer to data that was declared elsewhere. In the following example, the

@)))) . .
S pointer is referring to memory we newly allocated: a float. We will allocate space for a variable, fill the
Sl variable with a value, and free the memory when completed.
There are four parts to this process: creating a pointer variable so we can remember the memory location
that was allocated, allocate the memory with new, use the memory location using the dereference
operator *, and freeing the memory with delete when finished.
/***********************************
* EXAMPLE
* This is a bit contrived so I can’t think
* of a better name
************************************/
void example()
// At first, the pointer refers to nothing. We use the NULL pointer
) // to signify the address is invalid or uninitialized
% float * pNumber = NULL;
(=3
o // now we will allocate 4 bytes for a float.
= pNumber = new(nothrow) float;
if (!pNumber)
return;
// at this point (no pun intended), we can use it like any other pointer
assert(pNumber);
*pNumber = 3.14159;
// Regular variables get recycled after they fall out of scopes. Not true
// with allocated data. We need to free it with delete
delete pNumber;
pNumber = NULL;
}
9 As a challenge, try to break this example into three functions: one function to allocate the memory
SNl returning a pointer to a float, one to change the value taking a pointer to a float as a parameter, and a
“8l final function to free the data.
0]
(¢
<l The complete solution is available at 4-1-allocateValue.cpp or: X g
e
E: /home/cs124/examples/4-1-allocateValue.cpp
(7]
o

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.1 Allocating Memory | Page 329

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-1-allocateArray.html
https://video.byui.edu/media/4.1+-+Allocate+Value/0_d39pca24/18442462

Example 4.1 - Allocate Array

This example will demonstrate how to allocate an array of integers. Unlike with traditional arrays, we
will be able to prompt the user for the number of items in the array.

Write a program to prompt the user for the number of items in a list and the values for the list.

How many items? 3
Please enter 3 values
1: 100
2: 200
3: 400
A display of the list:
100
200
400

w[qoIJ ouwnq

First, we will write a function to allocate the list given, as a parameter, the number of items.

int * allocate(int numItems)

{
assert(numItems > 9); // better be a positive number!
// Allocate the necessary memory
int *p = new(nothrow) int[numItems]; // all the work is done here.
// if p == NULL, we failed to allocate
if (!p)
cout << "Unable to allocate " << numItems * sizeof(int) << " bytes\n";
return p;
}
This function is called by main(), which also calls a function to fill and display the list.
@« . .
o int main()
=Y {

int numItems = getNumItems();
assert(numItems > 9);

e
g.
e
=)

// allocate the memory
int * 1list = allocate(numItems); // allocated arrays go in pointer variables
if (list == NULL)

return 1;

// do something with it
fillList(list, numItems); // always pass the size with the array
displaylList(list, numItems);

// make like a tree

delete [] list; // never forget to release the memory
list = NULL; // you can say I am a bit paranoid
return 0;

The complete solution is available at 4-1-allocateArray.cpp or:

/home/cs124/examples/4-1-allocateArray.cpp

OS[Y 92§

Page 330 | 4.1 Allocating Memory | Unit 4: Advanced Topics | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-1-allocateValue.html
https://video.byui.edu/media/4.1+-+Allocate+Array/0_8v6ujq1c/18442462

ownd(

wR[qoIJ

oS

uonn

8udreyD

OS[Y 92§

Example 4.1 - Expanding Array

This example will demonstrate how to grow an array to accomidate an unlimited amount of data. This
will be accomplished by detecting when the array is full, allocating a new buffer of twice the size as the
tirst, copying the original data to the new buffer, and freeing the original bufter.

Write a program to read all the data in a file into a single string, then report how much data was read.

Filename: 4-1-expandingArray.cpp

reallocating from 4 to 8
reallocating from 8 to 16
reallocating from 16 to 32
reallocating from 32 to 64
reallocating from 64 to 128
reallocating from 128 to 256
reallocating from 256 to 512
reallocating from 512 to 1024

reallocating from 1024 to 2048
reallocating from 2048 to 4096

Total size: 2965

Most of the work is done in the reallocate function. It will double the size of the current buffer.

char * reallocate(char * bufferOld, int &size)

{

cout << "reallocating from

// allocate the new buffer

<< size << " to " << size * 2 << endl;

char *bufferNew = new(nothrow) char[size *= 2];

if (NULL == bufferNew)
{

cout << "Unable to allocate a buffer of size

size /= 2;
return buffer0ld;
}

// copy the data into the new buffer

int i;

for (i = @; bufferOld[i]; i++) // use index because it is easier

bufferNew[i] = bufferOld[i]; //

bufferNew[i] = '\0';

// delete the old buffer
delete [] buffer0Old;

// return the new buffer
return bufferNew;

<< size << endl;
// reset the size

than two pointers
// don't forget the NULL

It may seem a bit wasteful to double the size of the buffer with every reallocation. Would it be better
to increase the size by 50%, by 200%, or by a fixed amount (say 100 characters)? Modify the above
code to accommodate these different strategies and find out which has the smallest amount of wasted
space and the smallest number of reallocations.

The complete solution is available at 4-1-expandingArray.cpp or:

/home/cs124/examples/4-1-expandingArray.cpp

Procedural Programming in C++

Unit 4: Advanced Topics

4.1 Allocating Memory

Page 331

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-1-expandingArray.html
https://video.byui.edu/media/4.1+-+Expanding+Array/0_0pecrc80/18442462

Example 4.1 - Allocate Images

Our final example will demonstrate how to allocate the space necessary to display a digital picture. In
this example, the user will provide the size of the image; it is not known at compile time. There is one
important side-effect from this: we cannot use the multi-dimensional array notation with allocated
memory because the compiler must know the size of the array to use that notation. Since the size is not
known until run-time, this approach is impossible.

ownd(

The code to allocate the image is the following:

/*********************************
* ALLOCATE
* Grab the memory, returning NULL if

* anything went wrong
*********************************/

char * allocate(int numRow, int numCol)

{
assert(numRow > @ && numCol > 0);
// we allocate a 1-dimensional array and do the
// two dimensional math ourselves
char * image = new(nothrow) char[numRow * numCol];
if (!image)
{
cout << "Unable to allocate "
<< numRow * numCol * sizeof(char)
<< " bytes for a "
<< numCol << " x " << numRow
<< " image\n";
return NULL;
¥
return image;
}

»»
=2
g
i
e
=)

Observe how we must work with 1-dimensional arrays even though the image is 2-dimensional.
Therefore we must do the transformations ourselves:

/*********************************

* DISPLAY

* Display the image. This is ASCII-art

* so it is not exactly "High resolution”
stk sk sk Rk sk Rk sk sk sk Rk sk Rk sk sk ok ok

void display(const char * image, int numRow, int numCol)

{
// paranoia
assert(image);
assert(numRow > @ && numCol > 0);
// display the grid
for (int row = ©; row < numRow; row++) // two dimensional loop, first
{ // the rows, then
for (int col = @; col < numCol; col++) // the columns
cout << image[row * numCol + col]; // do the [] math ourselves
cout << endl;
}
}

The complete solution is available at:

/home/cs124/examples/4-1-allocateImages.cpp

OS[Y 92§

Page 332 | 4.1 Allocating Memory | Unit 4: Advanced Topics | Procedural Programming in C++

Problem 1

What is the output of the following code?

{
float * p = NULL;

cout << sizeof(p) << endl;

Answer:

Please see page 258 for a hint.

Problem 2

What is the output of the following code?

{
int a[40];

cout << sizeof(a[42]) << endl

Answer:

Please see page 215 for a hint.

Problem 3

How much memory does each of the following variables require?

char text[2]

char text[] = "Software";

int nums[2];

bool values[8];

Please see page 215 for a hint.

Procedural Programming in C++

Unit 4: Advanced Topics

4.1 Allocating Memory | Page 333

Problem 4

Write the code to declare a pointer to an integer variable and allocate it.

Answer:

Please see page 327 for a hint.

Problem 5

How do you indicate that you no longer need memory that was previously allocated? Write the code to
free the memory pointed to by the variable p.

Answer:

Please see page 328 for a hint.

Problem 6

What statement is missing in the following code?

¢ float * pNum = new float;
delete pNum;
<statement belongs here>
}
Answer:

Please see page 325 for a hint.

Page 334 | 4.1 Allocating Memory | Unit 4: Advanced Topics | Procedural Programming in C++

Problem 7

How much memory is allocated with each of the following?

new double;

©
1]

p = new char[8];

p = new int[6];

new char(65);

©
I

Please see page 328 for a hint.

Problem 8

Write the code to prompt the user for a number of float grades, then allocate an array just big enough to
store the array.

Please see page 330 for a hint.

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.1 Allocating Memory | Page 335

Write a program to:

e Prompt the user for the number of characters in a string

e Allocate a string of sufficient length (one more than # of characters!)
e Prompt the user for the string using getline

e Display the string back to the user

e Don’t forget to release the memory and check for allocation failures!

Note that since the first cin will leave the stream pointer on the newline character, you will need to use
cin.ignore() before getline() to properly fetch the section input.

Examples

Three examples... The user input is underlined.

Example 1

Number of characters: 13

Enter Text: NoSpacesHere!
Text: NoSpacesHere!

Example 2

Number of characters: 45
Enter Text: This is a ton of characters. How long is it?
Text: This is a ton of characters. How long is it?

Example 3 (allocation failure)

Number of characters: -10
Allocation failure!

Assignment

The test bed is available at:

testBed cs124/assign4l assignment4l.cpp

Don’t forget to submit your assignment with the name “Assignment 41” in the header.

Please see page 330 for a bint.

Page 336 | 4.1 Allocating Memory | Unit 4: Advanced Topics | Procedural Programming in C++

Unit 4. Advanced Topics

4.2 String Class

Sue has just finished the Mad Lib® assignment and found working with strings to be tedious and problematic.
There were so many ways to forget the NULL character! She decides to spend a few minutes and create her
own string type so she never has to make that mistake again. As she sits in the lab drafting a solution, Sam
walks in and peers over her shoulder. “You know,” he says “there is already a tool that does all those things...”

Objectives
By the end of this class, you will be able to:

e Use the String Class to solve a host of text manipulation problems.
e Understand which string operations are expensive and which are not.

Prerequisites

Before reading this section, please make sure you are able to:

e Understand the role the NULL character plays in string definitions (Chapter 3.2).
e Write a loop to traverse a string (Chapter 3.2).

Overview

One of the principles of Object Oriented programming (the topic of CS 165) is encapsulation, the process of
hiding unimportant implementation details from the user of a tool so he can focus on how the tool can be
used to solve his problem. To date, we have used two tools exemplifying this property: input file streams (cin
and fin) and output file streams (cout and fout). We learned how to use these tools to solve programming
problems, but never got into the details of how they work. Another similarly powerful tool is the String Class.

The String Class is a collection of tools defined in a library allowing us to easily manipulate text. With the
String Class, the programmer does not need to worry about buffer sizes (we were using 256 up to this point),
NULL characters, or using loops to copy text. In fact, most of the most common operations work as though
they are operating on a simple data type (such as an integer), allowing the programmer to forget he is even
working with arrays. Consider the following simple example:

#include <string> // use the string library

[AR K KRR ROK kR K oK o

* DEMO: simple string-class demo
*************************************/

void demo()

{
string lastName; // the data-type is “string,” no []s
cout << "What is your last name? “; // as were needed with c-strings
cin >> lastName; // cin works the way you expect
string fullName = "Mr. " + lastName; // the + operator appends
cout << "Hello " << fullName << endl; // cout works the way you expect

}

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.2 String Class | Page 337

Syntax

The syntax of the String Class is designed to be as streamlined and intuitive as possible. There are several
components: the string library, declaring a string, interfacing with streams, and performing common text
manipulation operations.

String library

Unlike c-strings (otherwise known as “the array type for strings”), the String Class is not built into the C++
language. These tools are provided in the string library as part of the standard namespace. Therefore, it is
necessary to include the following at the top of your programs:

#include <string>
If this line is omitted, the following compiler message will appear:

example.cpp: In function “int main()”:
example.cpp:4: error: “string” was not declared in this scope

Note that our compiler actually includes the string library as part of iostream. This, technically, is not part of
the iostream library design. We should never rely on this quirk of our current compiler library and always
include the string library when using the String Class.

Declaring a string

With a c-string and all other built-in data-types in C+ +, variables are not initialized when they are declared.
This is not true with the String Class. The act of declaring a string variable also initializes it to the empty

string.
{
string textl; // initialized to the empty string
cout << textl; // displays the empty string: nothing
char text2[256]; // not initialized
cout << text2; // random data will be displayed
}

Observe how we do not specify the size of a string when we declare it. This is because the authors of the
String Class did not want you to have to worry about such trivial details. Initially, the size is zero. However,
as more data is added to the string, it will grow. We can always ask our string variable for its current capacity:

{
string textEmpty;
string textFull = "Introduction to Software Development”;
cout << textEmpty.capacity() << endl; // @: the buffer is currently empty
cout << textFull.capacity() << endl; // 64: the first power of 2 greater
}

Sam’s Corner
The String Class buffer is dynamically allocated. This allows the buffer to grow as the need
arises. It also means that we need to use the capacity() function to find the size rather than sizeof().
When the string variable falls out of scope, its storage capacity is automatically freed unless it has been
allocated with new.

Page 338 | 4.2 SuingClass | Unit4: Advanced Topics | Procedural Programming in C++

Stream interfaces

We were able to use cin and cout with all the built-in data-types (int, float, bool, char, double, etc.), but not
with arrays (but we are able to use them with individual elements of arrays). The one exception to this is c-
strings; cin and cout treat pointers-to-characters as c-strings. When we include the string library, cin and cout
are also able to work with string variables:

{
string text;
cin >> text; // works the same as a c-string
cout << text << endl; // both cin and cout work

}

y

‘ , When working with c-strings, we had to be careful to not put more data in the buffer than there
5 was room. This was problematic with c-strings, unfortunately, because there was no way to tell
cin how big the string is:

char text[10];
cin >> text; // BUG! The user can enter more than 9 characters

With the String Class, the bufter size grows to accommodate the user input. This means that it
is impossible for the user to specify more input than there is space in the buffer; the buffer will
simply grow until it is big enough.

string text;

cin >> text; // Safe! +text can accommodate any amount
// of user input

With c-strings, we can use getline to fetch an entire line of text. We can also use getline with the String
Class, but the syntax is quite odd:

{
// first the c-string syntax
char textl[256]; // don’t forget the buffer
cin.getline(textl, 256); // the buffer size is a required parameter
// now the String Class
string text2; // no buffer needed here
getline(cin, text2); // note how cin is the parameter!

}

This syntax is, unfortunately, something we will just have to remember.

The reason for the String Class’ strange getline syntax is a bit subtle. All the functionality
associated with cin and cout are in the iostream library. If the getline method associated with cin took
a string as a parameter, then the iostream library would need to know about the String Class. The
iostream library must be completely ignorant of the String Class; otherwise everyone would be required
to include the string library when they do any console I/O. This would make the coupling between the
libraries tighter than necessary.

The string library extends the definition of cin and cout. We will learn more about how this is done in
CS 165 where we learn to make our own custom data-types work with cin and cout. .

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.2 String Class | Page 339

Text manipulation

Great pains was taken to make text manipulation with string objects as easy and convenient as possible. We
can append with the plus operator:

{

string prefix = "Mr. ";

string postfix = "Smith";

string name = prefix + postfix; // concatenation with the + operator. There is a
} // FOR loop hidden here. See Sue’s tip below

We can copy strings with the equals operator:

{

string text = "CS 124";

string copy;

copy = text; // copy with the = operator. There is a FOR loop
} // hidden here. See Sue’s tip below.

We can compare with the double-equals operator: Note that >, >=, <, <= and != work as you would expect.

{
string textl;
string text2;
cin >> textl >> text2;
if (textl == text2) // same with the other comparison operators
cout << "Same!\n"; // such as == = > >= < «=
else // There is a FOR loop hidden here!
cout << "Different!\n"; // See Sue’s tip below for a hint.
}

Finally, we can retrieve individual members of a string with the square-brackets operator:

{
string text = "CS 124";
for (int i = 0; i < 6; i++)
cout << text[i] << endl; // access data with the [] operator;
} // this is very fast! No FOR loops here

For more functionality associated with the String Class, please see:

http://en.cppreference.com/w/cpp/string/basic string

1Y
. Be careful of hidden performance costs when working with the String Class. Seemingly innocent

operations (like = or ==) must have a FOR loop in them. Ask yourself “if this were done with c-
strings, would a LOOP be required?”

Please see the following example for a test of the performance of the append operator in the
String Class at 4-2-stringPerformance.cpp or:

/home/cs124/examples/4-2-stringPerformance.cpp

Page 340 | 4.2 SuingClass | Unit4: Advanced Topics | Procedural Programming in C++

http://en.cppreference.com/w/cpp/string/basic_string
https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-2-stringPerformance.html

oun(

uonnjos

osTy 395 foSuarreyn

Example 4.2 - String Demo

This example will demonstrate how to declare a string, accept user input into a string, append text onto
the end of a string, copy a string, and display the output on the screen.

All these common string operations will be demonstrated in a single function:

#include <iostream>
#include <string> // don't forget this library
using namespace std;

/**

* MAIN: Simple demo of the string class.
***/
int main()
string firstName; // no []s required. The string takes care of the buffer
string lastName;

// cin and cout work as you would expect with the string class
cout << "What is your name (first last): ";

cin >> firstName >> lastName;

// Append ", " after last name so "Young" becomes "Young, "
// To do this, we will use the += operator.

lastName += ", ";

// Create a new string containing the first and last name so

// "Brigham" "Young"
// becomes
// "Young, Brigham".

// To do this we will use the + operator to combine
// two strings and the = operator to assign the results to a new string.
string fullName = lastName + firstName;

// display the results of our nifty creation
cout << fullName << endl;

return 0;

As a challenge, change the above program to prompt the user for his middle name. Append this new
string into fullName so we get the expected output.

The complete solution is available at 4-2-stringDemo.cpp or: Ty

/home/cs124/examples/4-2-stringDemo.cpp

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.2 String Class | Page 341

Unit 4

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-2-stringDemo.html
https://video.byui.edu/media/4.2+-+String+Demo/0_czjv2i3e/18442462

Using string objects as file name variables

One might be tempted to use the string class for a file name. This makes the getFilename() function more
intuitive and elegant:

/***

* GET FILENAME

* Prompt the user for a filename and return it
***/

string getFilename() // no pass-by-pointer parameter!

{

string fileName; // local variable
cout << "Please provide a filename: ";

cin >> fileName;

return fileName; // we can return a local variable

} // without fear it will be destroyed
From this point, how do we use the string fileName? Consider the following code:

{

string fileName = getFilename(); // this works as you might expect
ifstream fin(fileName); // ERROR! Wrong parameter!

}
The error is:
example.cpp:215: error: no matching function for call to "std::basic_ofstream<char,

std::char_traits<char> >::open(std::string&)" /usr/lib/gcc/x86_64-redhat-
linux/4.4.5/../../../../include/c++/4.4.5/fstream

This means that the file name parameter needs to be a c-string, not a string class. To do this, we need to
convert our string variable in to a c-string variable. This is done with the ¢_str() function:

{

string fileName = getFilename();
ifstream fin(fileName.c_str()); // c_str() returns a pointer to a char

Page 342 | 4.2 SwuingClass | Unit4: Advanced Topics | Procedural Programming in C++

ownd(

w[qoIJ

uonnjos

J8uareyn

OS[Y 999

Example 4.2 - String Properties

This example will demonstrate how to manipulate a string class object in a similar way to how we did
this with c-strings. This will include using pointers as well as using the array notation to traverse a
string.

Write a program to prompt the user for some text, display the number of characters, the number of
spaces, and the contents of the string backwards.

Please enter some text: Software Development
Number of characters: 20
Number of spaces: 1
Text backwards: tnempoleveD erawtfoS

We can get the length of a string with:

// find the number of characters
cout << "\tNumber of characters:
<< text.length()
<< endl;

We can traverse the string using a pointer notation by getting a pointer to the start of the string with
the c_str() method. This will return a constant pointer to a character.

// find the number of spaces
int numSpaces = 9;
for (const char *p = text.c_str(); *p; p++)
if (fp == ' ")
numSpaces++;

Finally, we can traverse the string using the array index notation:

// display the string backwards.

cout << "\tText backwards: ";

for (int i = text.length() - 1; i >= @; i--)
cout << text[i];

cout << endl;

As a challenge, try to change the case of all the characters in the string. This means converting uppercase
characters to lowercase, and vice-versa. As you may recall, we did this earlier (please see p. 249).

As another challenge, try to count the number of digits in the string. You may need to use isdigit()
form the cctype library to accomplish this.

The complete solution is available at 4-2-stringProperties.cpp or:

/home/cs124/examples/4-2-stringProperties.cpp

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.2 String Class | Page 343

Unit 4

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-2-stringProperties.html
https://video.byui.edu/media/4.2+-+String+Properties/0_96z3o6q4/18442462

Problem 1

Declare three string class variables. Prompt the user for the values and display them:

Please specify a name: Sam

Please specify another name: Sue
Please specify yet another name: Sid
The names are: "Sam" "Sue," and "Sid"

Answer:

Please see page 338 for a hint.

Problem 2

From the code written for Problem 1, create a new string called allNames. This string will be created in the
following way: first name, ", ", second name, ", and ", and third name. Display the new string.

Please specify a name: Sam

Please specify another name: Sue

Please specify yet another name: Sid
The names are: "Sam, Sue, and Sid"

Answer:

Please see page 341 for a bint.

Problem 3

From the code written for Problem 2, append the strings in alphabetical order to allName. You will need
to use the > operator to compare strings, which works much like it does with integers.

Please specify a name: Sam

Please specify another name: Sue

Please specify yet another name: Sid

The sorted names are: "Sam, Sid, and Sue"

Answer:

Please see page 340 for a hint.

Page 344 | 4.2 SuingClass | Unit4: Advanced Topics | Procedural Programming in C++

Consider the child’s song “Dem Bones” found at (http://en.wikipedia.org/wiki/Dem Bones or
http://www.youtube.com/). Sue would like to write a program to display the first eight verses of the song.
However, realizing that the song is highly repetitive, she would like to write a function to help her with
the task.

Please write a function to generate the Dem Bones song. This function takes an array of strings as input
and returns a single string that constitutes the entire song as output:

string generateSong(string list[], int num);

Consider the case where num == 4 and 1list has the following items: toe, foot, knee, and hip. This will
generate the following string:
toe bone connected to the foot bone

foot bone connected to the knee bone
knee bone connected to the hip bone

Directions

For this problem, the stub function generatesong() as well as main() is written for you. Your job is to
implement the function generatesong(). The file is located at:

/home/csl124/assignments/assign42.cpp

Please start with the above file because most of the program is written for you!

Assignment
The test bed is available at:

testBed csl1l24/assign42 assignment42.cpp

Don’t forget to submit your assignment with the name “Assignment 42” in the header.

Please see page 341 for a hint.

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.2 String Class | Page 345

http://en.wikipedia.org/wiki/Dem_Bones
http://www.youtube.com/watch?v=wbTTyacCO5c&feature=related

Unit 4. Advanced Topics

4.3 Command Line

Sue has just finished writing a program for her mother to convert columns of Euros to Dollars. In order to
make this program as convenient and user-friendly as possible, she chooses to allow the input to be specified
by command line parameters.

Objectives
By the end of this chapter, you will be able to:

e Write a program to accept passed parameters.
e Understand jagged arrays.

Prerequisites

Before reading this chapter, please make sure you are able to:

e Create a function in C++ (Chapter 1.4).

e Dass data into a function using both pass-by-value and pass-by-reference (Chapter 1.4).
e Declare a pointer variable (Chapter 3.3).

e Dass a pointer to a function (Chapter 3.3).

e Declare a multi-dimensional array (Chapter 4.0).

Overview

Most operating systems (Windows, Unix variants such as Linux and OS X, and others) enable you to pass
parameters to your program when the program starts. In other words, it is possible for the user to send data
to the program before the program is run. Most of the Linux commands you have been using all semester
take command line parameters:

Command Example Parameters

List the contents of a 1s *.cpp *.cpp

directory

Submit a homework submit project4.cpp project4.cpp
assignment

Change to a new cd submittedHomework submittedHomework

directory

Copy a file from one cp /home/csl24/template.cpp assignment43.cpp /home/cs124/template.cpp
location to another assignment43.cpp

In each of these cases, the programmers configured their programs to accept command line parameters. The
purpose of this chapter is to learn how to do this for our programs.

Page 346 | 4.3 Command Line | Unit4: Advanced Topics | Procedural Programming in C++

Syntax

To configure your program to accept command line parameters, it is necessary to define main() a little
differently than we have done this semester up to this point.

int main(int argc, char ** argv)

{
¥

Observe the two cryptic parameter names. In the past we left the parameter list of main() empty. When this
list is empty, we are ignoring any command line parameters the user may send to us. However, when we
specify the argec and argv parameters, we can access the user-sent data from within our program.

argc
The first parameter is the number of arguments or parameters the user typed. For example, if the program
name is a.out and the user typed...

a.out one two three

... then argc would equal 4 because four arguments were typed: a.out, one, two, three. Just like with any
passed parameter, the user can name this anything he wants. The convention is to use the name argc, but you
may want to name it something more meaningful like countArgument.

argv
The second parameter is the list of arguments. In all cases, we get an array of c-strings. Back to our example
above where the user typed...

a.out one two three

... then argv[e] equals "a.out" and argv[1] equals "one". Again, note that the first parameter is always the name
of the program. As with argc, argv is not the best name. It means “argument vector” or “list of unknown
arguments.” Possibly a better name would be 1istArguments.

Note the unusual ** notation for the syntax of argv. This means that we have a pointer to a pointer. Possibly
a better definition would be:

int main(int argc, char * argv[])

{
}

This might better illustrate what is going on. Here, we have an array of c-strings. How many items are in the
c-string? This is where arge comes into play.

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.3 Command Line | Page 347

Example 4.3 - Reflect the Command Line

This example will demonstrate how to accept data passed from the user through the command line.

Write a program to display on the screen the name of the program, how many parameters were passed
through the command line, and the contents of each parameter.

/home/cs124/examples> a.out one two three
The name of the program is: a.out
There are 3 parameters

Parameter 1: one

Parameter 2: two

Parameter 3: three

wo[qoIJ ouwnq

The first thing to look for is how main() has two parameters. Of course we can call these anything we
want, but argc and argv are the standard names. Next, observe how argv[e] is the name of the program.
Finally, we access earch parameter with argv[iArg].

#include <iostream>
using namespace std;

/**

* MAIN: Reflect back to the user what he

* typed on the command prompt
**/

int main(int argc, char ** argv) // again, MAIN really takes two parameters
s {
o // name of the program
E‘ cout << "The name of the program is: "
= << argv[e] // the first item in the list is always
g << endl; // the command the user typed

// number of parameters

cout << "There are "
<< argc - 1 // don’t forget to subtract one due to
<< " parameters\n"; // the first being the program name

// show each parameter
for (int iArg = 1; iArg < argc; iArg++) // standard command line loop
cout << "\tParameter" << iArg
<< ": " << argv[iArg] << endl; // each argv[i] is a c-string

return 0;

As a challenge, try to rename a.out (using the mv command) and run it again. How do you suppose the
program knows that it was renamed after compilation?

The complete solution is available at 4-3-commandLine.cpp or:

/home/cs124/examples/4-3-commandLine.cpp

osTy 325 foSuarreyn

Page 348 | 4.3 Command Line | Unit4: Advanced Topics | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-3-commendLine.html
https://video.byui.edu/media/4.3+-+Reflect+the+Command+Line/0_d1yre0i8/18442462

wo[qoIJ ouwnq

uonnjos

osTy 395 faSudrreyD

Example 4.3 - Get Filename

This example will demonstrate one of the most common uses for command line parameters: fetching
the filename from the user. This will be done using the string class.

Write a program to prompt the user for a filename. This can be provided either through a command
line parameter or, if none was specified, through a traditional prompt.

/home/cs124/examples> a.out fileName.txt
The filename is "fileName.txt"

/home/cs124/examples> a.out
Please enter the filename: fileName.txt
The filename is "fileName.txt"

There are three parts to this program. First, the program will determine if an erroneous number of
parameters were specified. If this proves to be the case, the program exists with a suitable error message.
Next, the program prompts the user for a filename if there are no parameters specified on the command
line. Finally, if there is a parameter specified, it is copied into the fileName variable.

int main(int argc, char ** argv)
{
// ensure the correct number of parameters was specified
if (argc > 2) // one for the name of the program, one for the filename
{
cout << "Unexpected number of parameters.\nUsage:\n";
cout << "\t" << argv[@] << " [filename]\n";
return 1;

}

// parse the command line

string fileName;

if (argc == 1) // only the program name was specified
fileName = getFilename();

else
fileName = argv[1];

// display the results
cout << "The filename is \

<< fileName << "\"\n";

return 0;

As a challenge, can you do this without the string class? Hint: use strcpy() from the cstring library.

Another challenge is to modify Project 3 to accept a filename as a command line parameter. Can you
do this for Project 4 as well?

The complete solution is available at 4-3-getFilename.cpp or:

/home/cs124/examples/4-3-getFilename.cpp

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.3 Command Line | Page 349

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-3-getFilename.html
https://video.byui.edu/media/4.3+-+Get+Filename/0_0m53t1gl/18442462

Jagged Arrays

Multi-dimensional arrays can be thought of as arrays of arrays where each row is the same length and each
column is the same length. In other words, multi-dimensional arrays are square. There is another form of
“arrays of arrays” where each row is not the same length. We call these “jagged arrays.” Consider the following
code:

{
char * name[] =
{
"CS 124",
"Software development"
}s
}

The first string is a different size than the second. Thus we have:

name

c[s] [1]2]a]\e]

sloffltfwlafr]e[Jdfelv]e[1]ofp[m[e[n[t]\e

In this example, we have declared an array of pointers to characters (char *). Each one of these pointers is
pointing to a string literal. Observe how each string is of a different size. Also, the two strings do not need to
be next to each other in memory as multi-dimensional arrays do.

It turns out that argv works much like a pointer to dynamically allocated memory. The only difference is that
the operating system typically puts each command line parameter immediately after the array of pointers in
memory:

argc argv argv[o] argv[1]

— ! \
[L[Tols]clwloln]e]0

_/

Page 350 | 4.3 CommandLine | Unit4: Advanced Topics | Procedural Programming in C++

oun(

oS

uonn

osTy 395 faSudrreyD

Example 4.3 - Jagged Array of Numbers

This example will demonstrate how to create a jagged array of integers. In this case, each row will be

allocated dynamically. There will be four rows, each containing a different number of items.

numbers

2l

L2 2]2]2]2]2]2]2] 2] 2]

AFIREN

X
REHEBBEER

There are five steps to setting up an jagged array of numbers:

1. Allocate the array of pointers. This must happen before the rows are allocated.

2. Allocate each row individually. This will require separate new statements.

3. Use the array. In this case, the value ‘42’ will be assigned to one cell.
4. Free the individual rows.

5. Free the array of pointers. This must happen after the individual rows are freed.

Note that if the number of rows is known at compile time then step 1 and 5 can be skipped.

{

int ** numbers;

// pointer to a pointer to an integer

// 1. allocate the array of arrays.
numbers = new int *[4];

// an array of pointers to integers

// 2. allocate each individual array
// an array of integers

numbers[0] =
numbers[1]
numbers[2]
numbers[3]

new
new
new
new

int[3];
int[10];
int[2];
int[5];

// 3. assign a value
numbers[2][1] = 42;

// 4. free each array

for (int i = 0; i < 4; i++)

delete [] numbers[i];

// access is the same as with standard
// multi-dimensional array

// we must free each individual array or we
// will forget about them and have a leak

// 5. free the array of arrays
delete [] numbers;

// finally free the original array

As a challenge, change the code to work with arrays of tloats. Make it work with five rows instead of
four (making sure to free each row when finished). Finally, try to fill each item in the array with a

number.

The complete solution is available at 4-3-jagged ArrayNumber.cpp or:

/home/cs124/examples/4-3-jaggedArrayNumber.cpp

Procedural Programming in C++

Unit 4: Advanced Topics

4.3 Command Line

Page 351

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-3-jaggedArrayNumber.html
https://video.byui.edu/media/4.3+-+Jagged+Array+of+Numbers/0_26nliwzh/18442462

Example 4.3 - Jagged Array of Strings

This example will demonstrate how to create a jagged array of strings. This allows us to use exactly the
amount of memory required to represent the user’s data.

oun(

Write a program to prompt the user for his name and store his name in a jagged array.

How man letters are there in your first, middle, and last name?
4 5 20
Please enter your first name: John

Please enter your middle name: Jacob

Please enter your last name: Jingleheimer Schmidt

Your name is "John Jacob Jingleheimer Schmidt"

w[qoIJ

To allocate the jagged array, we need to know the size of each row (sizeFirst, sizeMiddle, sizelast).

char ** names;

names = new char *[3]; // three names
names[@] = new char[sizeFirst + 1];
names[1] = new char[sizeMiddle + 1];
names[2] = new char[sizeLast + 1];

From here, it behaves like any other multi-dimensional array.

// fill the jagged array
cout << "Please enter

your first name: ";

cin.getline(names[0@],
cout << "Please enter
cin.getline(names[1],
cout << "Please enter
cin.getline(names[2],

oS

sizeFirst + 1);
you middle name: ";
sizeMiddle + 1);
your last name: ";
sizelast + 1);

uonn

// display the results

cout << "Your name is \
<< names[0@] << " '
<< names[1] <<
<< names[2] << "\"\n";

Finally, it is important to free the rows and the pointers in the correct order.

delete
delete
delete
delete

names[0];
names[1];
names[2];
names;

9_ As a challenge, can you add another row to correspond to the user’s title (“Dr.”)? Again, don’t forget
N O allocate the row and free the row.

o

=

0)]

o

“<ll The complete solution is available at 4-3-jaggedArrayString.cpp or: Kyy
o

E: /home/cs124/examples/4-3-jaggedArrayString.cpp

[72]

O

Page 352 | 4.3 Command Line | Unit4: Advanced Topics | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-3-jaggedArrayString.html
https://video.byui.edu/media/4.3+-+Jagged+Array+of+Strings/0_7n80uovf/18442462

Problem 1

Given the following program:

int main(int argc, char ** argv)
{
cout << argv[@] << endl;
return 0;

}

What is the output if the user runs the following command:

%a.out one two three

Answer:

Problem 2

Given the following program:

int main(int argc, char ** argv)

{
}

<code goes here>

Write the code that will display the value “three”:

%a.out one two three
three

Answer:

Please see page 348 for a hint.

Problem 3

Given the following program:

int main(int argc, char ** argv)

{

cout << argc << endl;

return 0;

}

What is the output if the user runs the following command:

%a.out one two

Answer:

Please see page 348 for a hint.

Procedural Programming in C++ | Unit 4: Advanced Topics

Please see page 348 for a hint.

4.3 Command Line

Page 353

Problem 4

Given the following program:

int main(int argc, char ** argv)

{
cout << atoi(argv[1l])
+ atoi(argv[2]);
return 0;
}

What is the output if the user types in:
a.out 4 56

Answer:

Please see page 348 for a hint.

Problem 5

Describe, in English, the functionality of the following program:

int main(int argc, char ** argv)
{
while (--argc)
cout << argv[argc] << endl;
return 0;

Answer:

Please see page 347 for a bint.

Problem 6

Write a program to compute the absolute value given numbers specified on the command line:

%a.out -4.2 96.2 -3.90

The absolute value of -4.2 is 4.2
The absolute value of 96.2 is 96.2
The absolute value of -3.90 is 3.9

Answer:

Please see page 347 for a hint.

Page 354 | 4.3 CommandLine | Unit4: Advanced Topics | Procedural Programming in C++

Write a program to convert feet to meters. The conversion from feet to meters is:
1 foot = 0.3048 meters

The input will be numbers passed on the command line. You will want to use the library function atof to
convert a string into a float. For example, consider the following code:

#include <cstdlib> // the library for atof()
#include <iostream>
using namespace std;

int main()
{
char text[] = "3.14159"; // a c-string
float pi; // the float where the answer will go
pi = atof(text); // atof() translates the c-string into a float
cout << pi << endl; // this better be 3.14159
return 0;
}

Pay special attention to the #include <cstdlib> code; you will need that for this assignment.

Example

Consider the output of a program called a.out:
a.out 123
1.0 feet is 0.3 meters
2.0 feet is 0.6 meters
3.0 feet is 0.9 meters

Assignment

The test bed is available at:

testBed cs124/assign43 assignment43.cpp

Don’t forget to submit your assignment with the name “Assignment 43” in the header.

Please see page 348 for a bint.

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.3 Command Line | Page 355

Unit 4. Advanced Topics

4.4 Instrumentation

Sue has just finished her first draft of a function to solve a Sudoku puzzle. It seems fast, but she is unsure how
tast it really is. How do you measure performance on a machine that can do billions of instructions per second?
To get to the bottom of this, she introduces counters in key parts of her program to measure how many times
certain operations are performed.

Objectives
By the end of this class, you will be able to:

e Instrument a function to determine its performance characteristics.

Prerequisites

Before reading this section, please make sure you are able to:

e Search for a value in an array (Chapter 3.1).

e Look up a value in an array (Chapter 3.1).

e Declare an array to solve a problem (Chapter 3.0).

e Write a loop to traverse an array (Chapter 3.0).

e Predict the output of a code fragment containing an array (Chapter 3.0).

Overview

One of the most important characteristics of a sorting or search algorithm is how fast it accomplishes its task.
There are several ways we can measure speed: the number of steps it takes, the number of times an expensive
operation is performed, or the elapsed time.

To measure the number of steps the operation takes, we need to add a counter to the code. This counter will
increment with every step, resulting in one metric of the speed of the algorithm. We call the process of adding
a counter “instrumenting.” Instrumenting is the process of adding code to an existing function which does
not change the functionality of the task being measured. Instead, the instrumenting code measures how the
task was performed. For example, if consider the following code determining if two strings are equal:

/***

* IS EQUAL

* Simple function to tell if two strings are equal
stk ok skok koo sk sk skok stk ok sk sk skok stk ko sk skok stk skl sk stk sk ksl skok ok /

bool isEqual(const char * textl, const char * text2)

t while (*textl == *text2 && *text2)
{
textl++;
text2++;
}
return *textl == *text2;
}

Page 356 | 4.4 Instrumentation | Unit4: Advanced Topics | Procedural Programming in C++

This same code can be instrumented by adding a counter keeping track of the number of characters compared:

/

>k 3k 3k 3k 3k 3k 3k ok 3k >k 3k ok >k >k 3k 5k >k >k 3k >k >k >k 3k >k >k %k 3k >k >k >k 3k >k >k >k 3k >k >k >k %k >k >k >k >k >k * %k %k %k %

* IS EQUAL

Same function as above except it will keep track
of how many characters are looked at to determine
if the two strings are equal. This function is

instrumented
***/

* % ¥ ¥

bool isEqual(const char * textl, const char * text2)

{

}

int numCompares = 1; // keeps track of the number of compares

while (*textl == *text2 && *text2)

{

textl++;

text2++;

numCompares++; // with every compare (in the while loop), add one!
}

cout << "It took " << numCompares <<
return *textl == *text2;

compares\n";

Write a program to manage your personal finances for a month. This program will ask you for your budget
income and expenditures, then for how much you actually made and spent. The program will then display a
report of whether you are on target to meet your financial goals

It is a good idea to put your instrumentation code in #ifdefs so you can easily remove it before
sending the code to the customer. The most convenient way to do that is with the following
construct:

#ifdef DEBUG
#tdefine Debug(x) x
#else

#tdefine Debug(x)
#endif

Observe how everything in the parentheses is included in the code if DEBUG is defined, while it is
removed when it is not. With this code, we would say something like:

Debug(numCompare++);

Again, if DEBUG were defined, the numCompare++; would appear in the code. If it were not defined,
then an empty semi-colon would appear instead.

Procedural Programming in C++ | Unit 4: Advanced Topics | 4.4 Instrumentation | Page 357

Example 4.4 - Instrument the Bubble Sort

This example will demonstrate how to instrument a complex function: a sort algorithm. This algorithm
will order the items in an array according to a given criterion. In this case, the criterion is to reorder the
numbers in array to ascending order. The question is: how efticient is this algorithm?

ownd(

Possibly the simplest algorithm to order a list of values is the Bubble Sort. This algorithm will first
tind the largest item and put it at the end of the list. Then it will find the second largest and put it in
the second-to-last spot (ispot) and so on.

We will instrument this function with the numCompare variable. Initially set to zero, we will increment
numCompare each time a pair of numbers (array[iCheck] > array[iCheck + 1])is compared. For
convenience, we will return this value to the caller.

[FFFAK KA A KA KK KA KA KKK KA K KA KKK K AAK KKK KA KA A KA A K KK KA K
* BUBBLE SORT

* Instrumented version of the Bubble Sort. We will return the number

* of times elements in the array were compared.
***/

int bubbleSort(int array[], int numElements)

// number of comparisons is initially zero
‘ int numCompare = 0;

// did we switch two values on the last time through the outer loop?
bool switched = true;

oS

// for each spot in the array, find the item that goes there with iCheck
for (int iSpot = numElements - 1; iSpot >= 1 && switched; iSpot--)
for (int iCheck = @, switched = false; iCheck <= iSpot - 1; iCheck++)

uonn

{
‘ numCompare++; // each time we are going to compare, add one
if (array[iCheck] > array[iCheck + 1])
int temp = array[iCheck]; // swap 2 items if out of order
array[iCheck] = array[iCheck + 1];

array[iCheck + 1] = temp;
switched = true; // a swap happened, do outer loop again

}

q return numCompare;

It is important to note that instrumenting should not alter the functionality of the program. Removing
the instrumentation code should leave the algorithm unchanged.

The complete solution is available at 4-4-bubbleSort.cpp or: Tau

/home/cs124/examples/4-4-bubbleSort.cpp

OSTY 99§

Page 358 | 4.4 Instrumentation | Unit4: Advanced Topics | Procedural Programming in C++

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-4-bubbleSort.html
https://video.byui.edu/media/4.4+-+Bubble+Sort/0_dokqkdtb/18442462

oun(

w[qoIJ

uonnjos

OS[Y 92§

Example 4.4 - Instrument Fibonacci

This example will demonstrate how to instrument two functions computing the Fibonacci sequence. It
will not only demonstrate how to add counters at performance-critical locations in the code, but will
demonstrate how to surround the instrumentation code with #ifdefs enabling the programmer to

conveniently remove the instrumentation code or quickly add it back.

As you may recall, the Fibonacci sequence is defined as the following:
0 ifn=0
F(n) = {1 ifn=1
Fn—-1)+Fn-2) itn>1
Write a program to compute the n™ Fibonacci number.
How many Fibonacci numbers shall we identify? 10

Array method: 55
Recursive method: 55

In debug mode (compiled with the -bbEBUG switch) , the program will display the cost:

How many Fibonacci numbers shall we identify? 10
Number of iterations for the array method: 9
Number of iterations for the recursive method: 177

In order to not influence the normal operation of the Fibonacci functions, the following code was added

to the top of the program:
#ifdef DEBUG // all the code that will only execute if DEBUG is defined
int countIterations = 0;
#tdefine increment() countIterations++
#tdefine reset() countIterations = 0

#tdefine getIterations() countIterations

#else // !DEBUG

#tdefine increment()
t#tdefine reset()

#tdefine getIterations() ©
#endif

Thus in ship mode (when DEBUG is not defined), the “functions” increment(), reset(), and
getIterations() are defined as nothing. In debug mode, these manipulate the global variable
countIterations. Normally global variables are dangerous. However, since this variable is only visible
when DEBUG is defined, its damage potential is contained. The last thing to do is to carefully put reset()
before we start counting and getIterations() when we are done counting.

reset();
int valueArray = computeFibonacciArray(num);
int costArray = getIterations();

This, coupled with increment() when counting constitutes all the instrumentation code in the program.

The complete solution is available at 4-4-fibonacci.cpp or:

/home/cs124/examples/4-4-fibonacci.cpp

Procedural Programming in C++ | Unit 4: Advanced Topics |

4.4 Instrumentation

Page 359

https://content.byui.edu/file/66227afd-b800-4ba3-b6b3-18db4db6c440/1/4-4-fibonacci.html
https://video.byui.edu/media/4.4+-+Instrument+Fibonacci/0_b73v2750/18442462

Our assignment this week is to determine the relative speed of a linear search versus a binary search using
instrumentation. To do this, start with the code at:

/home/cs124/assignments/assign44.cpp

Here, you will need to modify the functions binary() and linear() to count the number of comparisons
that are performed to find the target number.

Next, you will need to modify computeAverageLinear() and computeAverageBinary() to determine the
number of compares on average it takes to find each element in the array.

Example

Consider the file numbers. txt that has the following values:

14 10 36 47 92 100 110 125 136 142 143 150 160 167

For the above example, the list is:

e | 1] 2 3 4 5 6 7 8 9 10 11 12 13 14
114]10 |36 |47 |92 | 100 | 110 | 125 | 136 | 142 | 143 | 150 | 160 | 167

When we run the program on the above list, the program will compute how long it takes to find an element
in the list using the linear search method and using the binary search method. If I call 1inear() (a function
performing a linear search from left to right) with the search parameter set to 4, then I will find it with two
comparisons. This means linear(list, num, 4) == 2 because the function linear() will return the number
of comparisions, list contains the list of numbers, and num is the number of items in list. Thus
linear(list, num, 47) == 5. To find the average cost of the linear search, the equation will be:

(linear(list, num, 1) + linear(list, num, 4) + .. + linear(list, num, 167)) / num ==

(1 +2+ ... +15) / 15 ==
120 / 15 ==
8.0

To compute the average cost of the binary search, the equation will be:
(binary(list, num, 1) + binary(list, num, 4) + .. + binary(list, num, 167)) / num == 3.3
The user input is underlined.

Enter filename of list: numbers.txt

Linear search: 8.0
Binary search: 3.3
Assignment

The test bed is available at:

testBed cs124/assign44 assignmentd4.cpp

Don’t forget to submit your assignment with the name “Assignment 44” in the header.

Please see page 358 for a bint.

Page 360 | 4.4 Instrumentation | Unit4: Advanced Topics | Procedural Programming in C++

Unit 4. Advanced Topics

Unit 4 Practice Test

Sam has read that many programmers get paid by the number of lines of code they generate. Wanting to
maximize the size of his paycheck, he has decided to write a program to count the number of lines in a
given file.

Problem

Write a program to perform the following tasks:

1. Attempt to gather the filename from the command line

2. If no filename is present, prompt the user for the filename

3. Loop through the file, counting the number of lines

4. Display the results using the correct tense for empty, 1, and more than one.

Example

The user may specify the filename from the command line. Assume the file “examplei1.txt” has 2 lines:

a.out examplel.txt
examplel.txt has 2 lines.

If no file is specified on the command line, then the program will prompt the user for a file. Assume the
file “example2.txt” has 1 line of text:

a.out
Please enter the file name: example2.txt
example2.txt has 1 line.

Note how “line” is singular. Finally, if the file is empty or non-existent, then the following message will
appear:

a.out missing.txt
missing.txt is empty.

Grading
The test bed is:

testBed csl124/practice42 practiced2.cpp
The sample solution is:

/home/cs124/tests/practice42.cpp

Continued on the next page

Procedural Programming in C++ | Unit 4: Advanced Topics | Unit 4 Practice Test | Page 361

Grading for Test4

Sample grading criteria:

Modularization
10%

Command line
10%

File
20%

Problem
Solving
30%

Handle tense
on output
10%

Programming
Style
20%

Exceptional

100%

Perfect cohesion
and coupling

Input logic
"elegant”

"Good" and
perfect error
detection

The most elegant
and efficient
solution was
found

The most elegant
and efficient
solution was
found

Well
commented,
meaningful
variable names,
effective use of
blank lines

No bugs exist in
calling functions,
though
modularization is
not perfect

Able to access the
filename from the
command line and
from a prompt

Able to fetch all the
text from a file

Zero test bed
errors

All three cases
handled

Zero style checker
errors

Acceptable
70%
Redundant
data passed
between
functions

One bug

One bug

Correct on at
least one test
case

One bug

One or two
minor style
checker errors

Continued from previous page

Developing
50%

A bug exists
passing
parameters or
calling a function

An attempt was
made to accept
input from both
the command line
and from
prompts.
Elements of the
solution exist

Elements of the
solution are
present

Logic exists to
attempt to detect
need for different
tenses

Code is readable,
but serious style
infractions

Missing

0%

Only one
function used

No attempt was
made to access
the command

line parameters

No attempt was
made to read
from the file

No attempt was
made to count
all the words or
program failed
to compile

No attempt was
made to handle
tense

No evidence of
the principles of
"elements of
style" in the
program

Page 362 |

Unit 4 Practice Test |

Unit 4: Advanced Topics |

Procedural Programming in C++

Unit 4 Project : Sudoku

Write a program to allow the user to play Sudoku. For details on the rules of the game, see:

http://en.wikipedia.org/wiki/Sudoku

The program will prompt the user for the filename of the game he or she is currently working on and display
the board on the screen. The user will then be allowed to interact with the game by selecting which square he
or she wishes to change. While the program will not solve the game for the user, it will ensure that the user
has not selected an invalid number. If the user types °s’ in the prompt, then the program will show the user
the possible valid numbers for a given square. When the user is finished, then the program will save the board
to a given filename and exit.

This project will be done in three phases:

e Project 11 : Design the Sudoku program
e Project 12 : Allow the user to interact with the Sudoku game

e Project 13 : Enforce the rules of the Sudoku game

Interface Design

Consider a game saved as myGame. txt:

OWHAUUOOO®WO N
WOOUIONOON
NOOOP,POOOW

000159
302008
010002
654020
207300
931040
070003
103006
000714

Note that ‘@’ corresponds to an unknown value. The following is an example run of the program. Please see
the following program for an example of how this works:

/home/cs124/projects/prjl3.out

Program starts

An example of input is underlined.

Where

With the filename specified, the program will display a menu of options:

is your board located? myGame.txt

Options:

?
D
E
S
Q

Show these instructions

Display the board

Edit one square

Show the possible values for a square
Save and quit

After this, the board as read from the file will be displayed:

Procedural Programming in C++ | Unit 4: Advanced Topics

Project 4: Sudoku

Page 363

http://en.wikipedia.org/wiki/Sudoku

% 3

ABCDEFGHI
1 72 3] 1509
2 6 3 2] 8
3 8 | 1 | 2
_____ +_____+_____
4 7 |654 2
5 4|2 7|3
6 5 |931| 4
_____ +_____+_____
7 5 | 7 | 3
8 4 1 3] 6
9 93 2| |7 14

Here, the user will be prompted for a command (the main prompt).
> Z
Please note that you will need a newline, a carat ('>"), and a space before the prompt.

The next action of the program will depend on the user’s command. If the user types an invalid command,

then the following message will be displayed:

ERROR: Invalid command

Show Instructions

If the user types “?°, then the menu of options will be displayed again. These are the same instructions that are
displayed when the program is first run.

Display the Board

If the user types ‘D’, then the board will be redrawn. This is the same as the drawing of the board when the
program is first run.

Save and Quit
If the user types ‘Q°, then he or she will be prompted for the filename:

What file would you like to write your board to: newGame.txt
The program will display the following message:

Board written successfully
Then the program will terminate.

Edit One Square

If the user types °E’, then the program will prompt him for the coordinates and the value for the square to be

edited:

What are the coordinates of the square: Al

If the value is invalid or if the square is already filled, then the program will display one of the following
message and return to the main prompt:

ERROR: Square 'zz' is invalid
ERROR: Square 'Al' is filled

Page 364 | DProject4: Sudoku | Unit4: Advanced Topics | Procedural Programming in C++

With a valid coordinate, then the program next prompts the user for the value:

What is the value at 'Al': 9

If the user types a value that is outside the accepted range (1 < value < 9) or does not follow the rules of
Sudoku, then a message appears and the program returns to the main prompt:

ERROR: Value '9' in square 'Al' is invalid

Show Possible Values
It the user types °s’, then the program will prompt him for the coordinates and display the possible values:

What are the coordinates of the square: Al

The same parsing logic applies here as for the Edit One Square case. Once the user has selected a valid
coordinate, then the program will display the possible values:

The possible values for 'Al' are: 1, 5, 8, 9

After the message appears, the program returns to the main prompt.

Procedural Programming in C++ | Unit 4: Advanced Topics | Project 4: Sudoku | Page 365

% 3

Project 11

The first part of the project is the design document. This consists of three parts:
I. Create a structure chart describing the entire Sudoku program.

2. Write the pseudocode for the function computevalues(). This function will take as parameters
coordinates (row and column) for a given square on the board and calculate the possible values for
the square. To do this, computevalues() must be aware of all the rules of Sudoku. Make sure to include
both the logic for the rules of the game (only one of each number on a row, column, and inside
square), but also to display the values.

3. Write the pseudocode for the function interact(). This function will prompt the user for his option
(ex: ‘D’ for “Display the board” or ‘s’ for “show the possible values for a square”) and call the
appropriate function to carry out the user’s request. Note that the program will continue to play the
game until the user has indicated he is finished (with the ‘Q” option).

On campus students are required to attach this rubric to your design document. Please self-grade.

Page 366 | DProject4: Sudoku | Unit4: Advanced Topics | Procedural Programming in C++

https://content.byui.edu/file/26c8ce4d-40b2-44ba-9985-526198d35faa/1/124.Project%204%20-%20Rubric.pdf

Project 12

The second part of the Sudoku Program project (the first part being the design document due earlier) is to
write the code necessary to make the Sudoku appear on the screen:

Where is your board located? prj4.txt
Options:
? Show these instructions

D Display the board
E Edit one square
S Show the possible values for a square
Q Save and Quit
ABCDEFGHTI

1 72 3| [1 509

2 6 3 2] 8

3 8 | 1 | 2
_____ +_____+_____

4 7 |le 54 2

5 4]2 7|3

6 5 |931| 4
_____ +_____+_____

7 5 | 7 | 3

8 4 |1 3] 6

9 93 2] |7 14

> E

What are the coordinates of the square: e5
What is the value at 'E5': 8

>4
What file would you like to write your board to: deleteMe.txt

Perhaps the easiest way to do this is in a four-step process:

1.

2.

Create the framework for the program using stub functions based on the structure chart from your
design document.

Write each function. Test them individually before "hooking them up" to the rest of the program.
Verify your solution with testBed:

testBed cs124/projectl2 projectl2.cpp

Submit it with "Project 12, Sudoku" in the program header.

An executable version of the project is available at:

/home/cs124/projects/prjl2.out

Procedural Programming in C++ | Unit 4: Advanced Topics | Project4: Sudoku | Page 367

% 3

Project 13

The final part of the Sudoku Program project is to enforce the rules of Sudoku. This means that there can be
only one instance of a given number on a row, column, or inside square.

Where is your board located? prj4.txt
Options:
? Show these instructions

D Display the board
E Edit one square
S Show the possible values for a square
Q Save and Quit
ABCDEFGHTI

1 72 3| [1 509

2 6 3 2] 8

3 8 | 1 | 2
_____ +_____+_____

4 7 |le 54 2

5 4]2 7|3

6 5 |931| 4
_____ +_____+_____

7 5 | 7 | 3

8 4 |1 3] 6

9 93 2] |7 14

> s

What are the coordinates of the square: b2
The possible values for 'B2' are: 1, 4, 9

> e

What are the coordinates of the square: b2
What is the value at 'B2': 2
ERROR: Value '2' in square 'B2' is invalid

>4q
What file would you like to write your board to: deleteMe.txt

Perhaps the easiest way to do this is in a four-step process:

1. Start with the code written in Project 12.
2. Fix any necessary bugs.
3. Verify your solution with testBed:

testBed cs124/projectl3 projectl3.cpp

4. Submit it with "Project 13, Sudoku" in the program header.

An executable version of the project is available at:

/home/cs124/projects/prjl3.out

Page 368 | DProject4: Sudoku | Unit4: Advanced Topics | Procedural Programming in C++

Appendix

A. Elements of Style

While the ultimate test of a program is how well it performs for the user, the value of the program is greatly
limited if it is difficult to understand or update. For this reason, it is very important for programmers to write
their code in the most clear and understandable way possible. We call this “programming style.”

Elements of Style

Perhaps the easiest way to explain coding style is this: give the bugs no place to hide. When our variable
names are clearly and precisely named, we are leaving little room for confusion or misinterpretation. When
things are always used the same way, then readers of the code have less difficulty understanding what they
mean.

There are four components to our style guidelines: variable and function names, spacing, function and
program headers, general comments, and other standards.

Variable and function names

The definitions of terms and acronyms of a software program typically consist of variable declarations. While
variables are declared in more than one location, the format should be the same. Using descriptive identifiers
reduces or eliminates the need for explanatory comments. For example, sum tells us we are adding something;
sumofsquares tells us specifically what we are adding. Use of descriptive identifiers also reduces the need for
comments in the body of the source code. For example, sum += x * x; requires explanation. On the other
hand, sumofsquares += userInput * userInput; not only tells us where the item we are squaring came from,
but also that we are creating a sum of the squares of those items. If identifiers are chosen carefully, it is possible
to write understandable code with very few, if any, comments. The following are the University conventions
for variable and function names:

Identifier Example Explanation

Variable sumofSquares Variables are nouns so it follows that variable names
should be nouns also. All the words are TitleCased
except the first word. We call this style camelCase.

Function displaybDate() Functions are verbs so it follows that function names
should also be verbs. Like variables, we camelCase
functions.

Constant PI Constants, include #defines, are ALL_CAPS with an

underscore between the words.

Data Types Date Classes, enumeration types, type-defs, and structures are
TitleCased with the first letter of each word capitalized.
These are CS 165 constructs.

Procedural Programming in C++ | Section 4: Advanced Topics | Unit 4 Project : Sudoku | Page 369

Function and program headers

It takes quite a bit of work to figure out what a program or function is trying to do when all the reader has is
the source code. We can simplify this process immensely by providing brief summaries. The two most
common places to do this are in function and program headers.

A function header appears immediately before every function. The purpose is to describe what the program
does, any assumptions made about the input parameters, and describe the output. Ideally, a programmer
should need no more information than is provided in the header before using a function. An example of a
tunction header is the following:

/**

* GET YEAR
Prompt the user for the current year. Error checking
will be performed to ensure the year is valid

INPUT: None (provided by the user)

OUTPUT: year
**/

*
*
*
*

A program header appears at the beginning of every file. This identifies what the program does, who wrote
it, and a brief description of what it was written for. Our submission program reads this program header to
determine how it is to be turned in. For this reason, it is important to start every program with the template
provided at /home/cs124/template.cpp. The header for Assignment 1.0 is:

/***

* Program:
* Assignment 10, Hello World
Brother Helfrich, CS124
Author:
Sam Student
Summary:
Display the text “Hello world” on the screen.
Estimated: 0.7 hrs
Actual: 0.5 hrs

I had a hard time using emacs.
**/

* X K X X X X ¥

General Comments

We put comments in our code for several reasons:

e To describe what the next few lines of code do

e To explain to the reader of the code why code was written a certain way

e To write a note to ourselves reminding us of things that still need to be done
e To make the code easier to read and understand

Since a comment can be easily read by a programmer and source code, in many cases, must be decoded, one
purpose of comments is to clarify complicated code. Comments can be used to convey information to those
who will maintain the code. For example, a comment might provide warning that a certain value cannot be
changed without impacting other portions of the program. Comments can provide documentation of the
logic used in a program. Above all else, comments should add value to the code and should not simply restate
what is obvious from the source code.

Page 370 | A.ElementsofStyle | Appendix | Procedural Programming in C++

The following are meaningless comments and add no value to the source code:

int i; // declare i to be an integer
i=2;// setito?2

On the other hand, the following comments add value:

int i; // indexing variable for loops
i =2; // skip cases @ and 1 in the loop since they were processed earlier

With few exceptions, we use line comments (//) rather than block comments (/* .. */) inside functions.
Please add just enough comments to make your code more readable, but not so many that it is overly verbose.
There is no hard-and-fast rule here.

“Commenting out” portions of the source code can be an eftective debugging technique. However, these
sections can be confusing to those who read the source code. The final version of the program should not
contain segments of code that have been commented out.

Spacing
During the lexing process, the compiler removes all the spaces between keywords (such as int, for, or if) and

operators (such as + or »>=). To make the code human-readable, it is necessary to introduce spaces in a
consistent way. The following are the University conventions for spaces:

Rule Example Explanation

Operators ~ tempC = 5.8 / 9.5 (tempF - 32.8) There needs to be one space between all
operators, including arithmetic (+ and %),
assignment (= and +=) and comparison (>=

and !=)
Indention { With every level of indention, add three
int answer = 42; hi D the tab ch
if (answer > 100) white spaces. Do not use the tab character
cout << "Wrong answer!"; to indent.
¥
Functions Put one blank line between functions.
More than one results in unnecessary
scrolling, less feels cramped
Related /) et the dat Much like an essay is sub-divided into
ge e data . . .
code float income; Paragraphs, a function can be sub-divided
cout << "Enter income: "; into related statements. Each statement
cin >> income; should have a blank line separating them.

Other Standards

Because of the way printers and video displays handle text, readability is improved by keeping each line of
code less than 80 characters long.

Subroutines and classes should be ordered in a program such that they are easy to locate by the reader of the
source code. This usually means grouping functions that perform similar operations. For example, all input
functions should be next to each other in a file, as should output functions.

Each curly brace should be on its own line; this makes them easier to match up.

Please make sure there are no spelling or grammatical errors in your source code.

Procedural Programming in C++ | Appendix | A.ElementsofStyle | Page 371

Style Checklist

Comments White space
e program introductory comment block e white space around operators
e identify program e white space between subroutines
e identify instructor and class e white space after key words
e identify author e cach curly brace on its own line
e Dbrief explanation of the program
* brief explanation of each class Indentation
e Dbrief explanation of each subroutine e statements consistently indented

e Dblock of code within another block of code
Variable declarations further indented

e declared on separate lines

e comments (if necessary) General
e code appropriately commented
Identifiers e cach line less than 80 characters long
e descriptive e correct spelling
e correct use of case e no unused (e.g. commented out) code

e correct use of underscores

Examples
The following are two examples of programs with excellent programming style.

/R ks sk skok stk ok sk sk sk stk kol sk sk skl kol sk sk skl kol sk sk ok skl kol sk sk skl skt sk ok skok ks ok ok ok skok
* Program:

* Homework 00, Add Integers
* Brother Twitchell, CS 124

* Author:

* Brother Twitchell

* Summary:

* Demonstrates the amazing ability to add a positive integer and a
* negative integer and to display the resulting sum.

*

**/

#include <iostream>
using namespace std;

R AR AR KRR KRS KR SR K K SRS K S K SR SRR SRR OK K KRR ok K

* Prompts the user for a positive and a negative integer.
* If required input is supplied, the two integers are added and the
* sum is displayed.
***/
int main()

int positiveIntegerFromUser;

int negativeIntegerFromUser;

int sumOfIntegersFromUser;

// Prompt the user for a number

cout << "Enter a positive integer" << endl;
cin >> positiveIntegerFromUser;

Page 372 | A.ElementsofStyle | Appendix | Procedural Programming in C++

if (positiveIntegerFromUser > 0)

{
cout << "Enter a negative integer" << endl;
cin >> negativelntegerFromUser;

if (negativeIntegerFromUser < 0)
{
// amazing! we have both a positive and a negative integer
// add them and output the results
sumOfIntegersFromUser = positiveIntegerFromUser +
negativeIntegerFromUser;
cout << "The sum of " << positiveIntegerFromUser;
cout << " and " << negativeIntegerFromUser;
cout << " is " << sumOfIntegersFromUser << endl;

}

else

{
// while the user has demonstrated his/her ability to enter a
// positive integer, he/she failed to supply a negative
// integer; give up!
cout << negativeIntegerFromUser << " is not negative" << endl;
cout << "Next time please enter a number less than zero (0)."
cout << "Program terminating." << endl;

<< endl;

}

}

else

{
// the user has not supplied a positive integer; give up!
cout << positiveIntegerFromUser << " is not positive" << endl;
cout << "Next time please enter a number greater than zero (90).
cout << "Program terminating." << endl;

"

<< endl;

}

return 0;

Procedural Programming in C++ | Appendix | A.ElementsofStyle | Page 373

Another example:

/***

* Program:

* Homework 00, Cube a Number
* Brother Twitchell, CS 124

* Author:

* Brother Twitchell

* Summary:

* This program reads a number from a text file, cubes the number,
*
*

and outputs the result.
**/

#include <iostream>
#tinclude <fstream>
using namespace std;

/***

* Returns the cube of the supplied integer value.
* Receives a pointer to the value to be cubed.
***/
int cubedInteger(int number)

// return the cube the supplied value

return (number * number * number);

}

/***

* Opens the input file and reads the number to be cubed. Outputs the

* original and cubed values. Closes the input file.
***/
int main()

{

int numberFromFile = ©;

// open the input file, read a single integer from it, and close it
ifstream inputFile("number.txt" /*filename containing the number*/);

// yes, yes, I know we are not testing to see if we succeeded!
// This is only a short demonstration program.

inputFile >> numberFromFile;

inputFile.close();

// output the original value and its cube
cout << "Impress your datel!l\n";
cout << "The cube of "
<< numberFromFile
<< " is
<< cubedInteger(numberFromFile)
<< "L
<< endl;
return 0;

Page 374 | A.ElementsofStyle | Appendix | Procedural Programming in C++

Appendix

B. Order of Operations

The order of operations is the evaluation order for an expression. When parentheses are not included, the
tollowing table describes which order the compiler assumes you meant. Of course, it is always better to be
explicit by including parentheses. Operators in rows of the same color have the same precedence.

Name Operator Example

Array indexing [] array[4]

Function call @) function()

Postfix increment and decrement | ++ -- count++ count--

Prefix increment and decrement ++ -- ++count --count

Not ! Imarried

Negative - -4

Dereference * *pValue

Address-of & &value

Allocate with new new new int

Free with delete delete delete pValue

Casting O (int)4.2

Get size of sizeof sizeof(int)

Multiplication * 3*4

Division / 3/ 4

Modulus % 3% 4

Addition + 3+14

Subtraction - 3 -4

Insertion << cout << value

Extraction >> cin >> value

Greater than, etc. >= <= > < 3 >4

Equal to, not equal to == I= 3 1=14

Logical And && passed && juniorStatus
Logical OR || passed || juniorStatus
Assignment, etc. = 4= *= -= /= %= |value += 4

Conditional expression ? o passed ? "happy" : "sad"

Procedural Programming in C++ | Appendix | B. Order of Operations | Page 375

Appendix

C. Lab Help

Behold, you have not understood; you have supposed that I would give it unto you,
when you took no thought save it was to ask me.

But, behold, I say unto you, that you must study it out in your mind ..."
D&C9:7-8

The Linux lab is staffed with lab assistants to provide support for students using the lab for computer science
courses. Their major role is to provide assistance, support, advice, and recommendations to students. They
are not to be considered a help desk where you bring a problem to them and expect them to solve it! As the
semester progresses, lab assistants become increasingly busy and are not able to provide as much tutoring.
Those struggling with a class or those that have been away from programming for a significant period (e.g.
mission) are encouraged to sign up for class tutors from the tutoring center.

Lab assistants can be very useful when you have encountered a brick wall and just don't know how to proceed.
They can help get you going again! You must put forth effort to complete your homework assignment. Do
not expect lab assistants to give you answers or source code for your specific assignments. Instead, expect
questions to guide you to a solution. For example they might say, “Have you tried using a while loop?”, or
“Are you sure you haven't exceeded your array bounds?”, or “Check the syntax of your switch statement,” or
“Try putting some debug statements in your code sere to see what is happening.” With this kind of help you
will understand what you have done wrong, you will be less likely to make this mistake in the future, and if
this mistake is made in the future, you will be in a better situation to solve the problem without assistance.
As a general rule, lab assistants are zot allowed to touch the keyboard.

Lab assistants have been hired to help all students with general questions regarding use of the computers in
the Linux lab. This includes, but is not limited to, difficulties with text editors, submit, styleChecker, testBed,
svn, PuTTY, winscp, and simple operating system issues. CS 124 and CS 165 students should expect appropriate
assistance from lab assistants. CS 235 students, particularly those who have been away for a couple of years,
should also expect appropriate assistance from lab assistants during the first few weeks of the semester.
Generally speaking, however, students should have learned how to help themselves and resolve their own
problems by the time they have completed CS 235. CS 213 students may expect some help from the lab
assistants.

Lab assistants are expected to give first priority to CS 124 and CS 165 students. Students in upper-division
classes should not expect assistance from lab assistants.

To more effectively respond to questions, a “Now Serving” system has been setup in the lab which allows a
student to click on an icon and it automatically places a request for help in a queue. The lab assistants monitor
the queue and help the next student in the queue. It's like taking a number and waiting for your number to
be called. However, instead of calling your number they just come to your machine. To use the “Now Serving”
system you will need to ask the lab assistants to set it up for you the first time. Once initially setup an icon
will be visible each time you login then you simply click on the Icon to make a request for help. You won't
need to keep holding your hand up waiting for a lab assistant to see you, and it makes sure that you get help
in the proper order. Please ask the lab assistants to show you how to use the “Now Serving” software so they
can serve you better. Students in upper-division classes should not expect assistance from lab assistants

Page376 | C.LabHelp | Appendix | Procedural Programming in C++

Appendix

D. Emacs & Linux Cheat-Sheet

The emacs editor and the Linux system are most effectively used if commonly-used commands are memorized.
The following are the commands used most frequently for CS 124:

Common Linux Commands

Common Emacs Commands

o Beginning of line oTs I Change Directory, move from
C-€ vevrennnnnnn End of line the current directory to another
C-K vvveiiieen Kill line. Also puts the line in the 1s............. List information about file(s)
buffer i More verbose version of Is
o Undo mkdir.......... Create new folder(s)
C-x C-f cvvnnnnnn. Load a new file or an existing file. The mv............. Move or rename files or
name will be specified in the window directories
below o Copy a file from one location to
another
C-X 2 teeeeennnnns Split the window into two e eeemeeeeees Remove files
C-X1 eeeernnnnnn, Go back to one window mode rmdir. ... Remove folder(s)
Cox A Enlarge window PWd . Print Working Directory
C-X 0 tovennnnnnnn Switch to another window
Cateveeennnn... Display the contents of a file to
Alt-x shell Run the shell in the current window th_e Screen
Alt-x goto-line .. Goto a given line MOPe..couennnn. Erl:éalay output one screen at a
clear.......... Clear terminal screen
C-X C-C vennnnnnnn Save buffer and kill Emacs
CoXCos e Save buffer exit....ooiu..s Exit the shell
fgrep.......... Search file for lines that match
C-space Set mark astring
CoW oeeeeeennnennn, Cut from the cursor to the mark 57 5 Stop a process from running
ALt-W «ouvennnnnn Copy from the cursor to the mark Man....ooeenen. Review the help page of a given
CY vveeeennnnnnn, Paste from the buffer command
yppasswd....... Modify a user password
emacs.......... Common code editor
V7 T More primitive but ubiquitous
editor
NaN0...cvuvenn. Another editor
- Compile a C++ program
styleChecker...Run the style checker on a file
testBed........ Run the test bed on a file
submit......... Turn in a file
Procedural Programming in C++ | Appendix | D. Emacs & Linux Cheat-Sheet | Page 377

Appendix

E. C++ Syntax Reference Guide

Pre-processor

#tinclude <LlibraryName>
t#tdefine <MACRO_NAME> <expansion>

#include <iostream> // for CIN & COUT

directives #include <iomanip> // for setw()
#include <fstream> // for IFSTREAM
#include <string> // for STRING
#include <cctype> // for ISUPPER
#include <cstring> // for STRLEN
#include <cstdlib> // for ATOF
#tdefine PI 3.14159
#define LANGUAGE "C++"
Function <ReturnType> <functionName>(<params>)
{ int main()
<statements> {
return <value>; cout << "Hello world\n";
} return 0;
}
Function <DataType> <passByValueVariable>,
<DataType> & <passByReferenceVariable>, void function(int value,
parameters const <DataType> <CONSTANT VARIABLE>, int &reference,
<BaseType> <arrayVariable>[] const int CONSTANT,
int array[])
{
}
COUT cout << <expression> << .. ;
cout << "Text in quotes”
<< 6 * 7
<< getNumber()
<< endl;
i cout.setf(ios::fixed);
Formatting cout.setf(ios: :showpoint); cout.setf(ios::fixed);
output for cout.precision(<integerExpression>); cout.setf(ios::showpoint);
money cout.precision(2);
Declaring <DataType> <variableName>; - -
. <DataType> <variableName> = <init>; int integerValue;
variables const <DataType> <VARIABLE_NAME>; float realNumber = 3.14159;
const char LETTER_GRADE = 'A’;
CIN cin >> <variableName>;

cin >> variableName;

IF statement

if (<Boolean-expression>)

{ if (grade >= 70.0)
<statements> cout << "Great job!\n";
} else
else {
{ cout << "Try again.\n";
<statements> pass = false;
} }
assert(<Boolean-expression>);
Asserts ’ #include <cassert> // at top of file
{
assert(gpa >= 0.0);
}
Page 378 | E.C++ Syntax Reference Guide | Appendix Procedural Programming in C++

Name ‘ Syntax ‘ Example
FOR for (<initialization statement>; - —
] <Boolean-expression>; for (}nF ilist = 6;
oop <increment statement>) ilist < sizelist;
{ iList++)
<statements> cout << list[iList];
X
WHILE while (<Boolean-expression>)
{ while (input <= @)
h)OP <statements> cin >> input;
}
DO-WHILE ?0 o
Loop <statements> cin >> input;
} while (input <= 0);
while (<Boolean-expression>);
ifstream <streamVar>(<fileName>);
i;i:di}onl if (<streamvar>.fail()) ’ #include <fstream> // at top of file
{ {
<statements> ifstream fin("data.txt");
} if (fin.fail())
return false;
<streamVar> >> <variableName>;
fin >> value;
<streamVar>.close();
fin.close();
}
Write to ofstream <streamVar>(<fileName>);
Fil if (<streamVar>.fail()) #include <fstream> // at top of file
e { {
<statements>; ofstream fout("data.txt");
} if (fout.fail())

<streamVar> << <expression>;

return false;

fout << value << endl;
<streamVar>.close();
fout.close();
}
Fiﬂ.anAarray <BaseType> <arrayName>[<size>]; -
<BaseType> <arrayName>[] = int grades[1e]; ‘
{ <CONST_1>, <CONST 2>, .. }; for (int 1 = @; i < 108; i++)
{
for (int i = @; i < <size>; i++) cout << "Grade " << i+ 1 << "
<arrayName>[i] = <expression>; cin >> grades[i];
}
C-Strings char <stringName>[<size>]; -
& cin >> <stringName>; char firstName[256];
for (char * <ptrName> = <stringName>; cin >> firstName;
*<ptrName>; for (char * p = firstName; *p; p++)
<ptrName>++) cout << *p;
cout << *<ptrName>;
String Class string <stringName>; - -
& cin >> <stringName>; string stringl; // declare

cout << <stringName>;
getline(<streamName>, <stringName>);

if (<stringNamel> == <stringName2>)
<statemement>;

<stringNamel> += <stringName2>;
<stringNamel> = <stringName2>;

string string2 = "124"; // initialize
cin >> stringl; //
getline(cin, string2); //
if (stringl == string2) //

stringl += string2; //
string2 = stringl; //

input
getline
compare
append

copy

Procedural Programming in C++ | Appendix

E. C++ Syntax Reference Guide | Page 379

Name ‘ Syntax ‘ Example

Switch switch (<integer-expression>)
{ switch (value)
case <integer-constant>: {
<statements> case 3:
break; // optional cout << "Three";
. break;
default: // optional case 2:
<statements> cout << "Two";
} break;
case 1:
cout << "One";
break;
default:
cout << "None!";
}
Conditional <Boolean-expression> ? <expression> :
. <expr\ession> cout <« "HellO, "
EXPreSSlOn << (isMale ? "Mr. " : "Mrs. ")
<< lastName;
Multi- <BaseType> <arrayName>[<SIZE>][<SIZE>]; :t board 3113
dimensional <Ba?eType> <arrayName>[][<SIZE>] = int board[3][3];
array { <CONST_@_0>, <CONST_0_1>, .. }, for (int row = 8; row < 3; row++)
{ <CONST_1_6>, <CONST_1_1>, .. }, for (int col = @; col < 3; col++)
. board[row][col] = 10;
¥
<arrayName>[<index>][<index>] =
<expression>;
Allocate <ptr> = new(nothrow) <DataType>;
<ptr> = new(nothrow> <DataType>(<init>); float * pl = new(nothrow) float;
memory <ptr> = new(nothrow) <BaseType>[<SIZE>]; int * p2 = new(nothrow) int(42);
char * text = new(nothrow) char[256];
Free memory delete <pointer>; // one value
delete [] <arrayPointer>; // an array delete pNumber;
delete [] text;
Command int main(int <countVariable>,
. char **<arrayVariable>) int main(int argc, char ** argv)
line { {
parameters } }
Library ‘ Function Prototype
#include <cctype> bool isalpha(char); // is the character an alpha ('a' - 'z' or 'A' - 'Z')?
bool isdigit(char); // is the character a number ('0' - '9')?
bool isspace(char); // is the character a space (' ' or "\t' or '\n')?
bool ispunct(char); // is the character a symbol such as %#$!-_*@.,?
bool isupper(char); // is the character uppercase ('A' - 'Z')?
bool islower(char); // is the character lowercase ('a' - 'z')?
int toupper(char); // convert lowercase character to uppercase. Rest unchanged
int tolower(char); // convert uppercase character to lowercase. Rest unchanged
#include <cstring> | int strlen(const char *); // find the length of a c-string
int strcmp(const char *, const char *); // @ if the two strings are the same
char * strcpy(char *<dest>, const char *<src>); // copies src onto dest
#include <cstdlib> | double atof(const char *); // parses input for a floating point number and returns it
int atoi(const char *); // parses input for an integer number and returns it

Page 380 | E.C++ Syntax Reference Guide | Appendix | Procedural Programming in C++

Appendix

E Glossary

t#tdefine

#ifdef

abstract

address-of
operator

argc

argv

A #define (pronounced “pound define”) is a mechanism to expand macros
in a program. This macro expansion occurs before the program is
compiled. The following example expands the macro PI into 3.1415

#define PI 3.1415

The #ifdef macro (pronounced “if-deaf™) is a mechanism to conditionally
include code in a program. If the condition is met (the referenced macro
is defined), then the code is included.

#ifdef DEBUG
cout << "I was herel\n";
t#tendif

One of the three levels of understanding of an algorithm, abstract
understanding is characterized by a grasp of how the parts or components
of a program work together to produce a given output.

The address-of operator (&) yields the address of a variable in memory. It
is possible to use the address-of operator in front of any variable.

{
int variable;
cout << "The address of 'variable' is "
<< &variable;
¥

Arithmetic Logic Unit. This is the part of a CPU which performs simple
mathematical operations (such as addition and division) and logical
operations (such as or and NOT)

When setting up a program to accept input parameters from the command
line, argc is the traditional name for the number of items or parameters in
the jagged array of passed data. The name “argc” refers to “count of
arguments.”

int main(int argc,
char ** argv);

// count of parameters

When setting up a program to accept input parameters from the command
line, argv is the traditional name for the jagged array containing the passed
data. The name “argv” refers to “argument vector” or “list of unknown
arguments.”

int main(int argc,

char ** argv); // array of parameters

Procedural Programming in C++ | Appendix | F. Glossary

Chapter 2.1

Chapter 2.1

Chapter 2.4

Chapter 3.3

Chapter 0.2

Chapter 4.3

Chapter 4.3

Page 381

array

assembly

assert

bitwise operator

bool

Boolean operator

data-driven

case

casting

char

Page 382 |

F. Glossary |

An array is a data-structure containing multiple instances of the same item.
In other words, it is a “bucket of variables.” Arrays have two properties:
all instances in the collection are the same data-type and each instance can
be referenced by index (not by name).

{
int array[4];
array[2] = 42;

// a list of four integers
// the 3" member of the list

}

Assembly is a computer language similar to machine language. It is a low-
level language lacking any abstraction. The purpose of Assembly language
is to make Machine language more readable. Examples of Assembly
language include LoAD M:3 and ADD 1.

An assert is a function that tests to see if a particular assumption is met. If
the assumption is met, then no action is taken. If the assumption is not
met, then an error message is thrown and the program is terminated.
Asserts are designed to only throw in debug code. To turn off asserts for
shipping code, compile with the -DNDEBUG switch.

A bitwise operator is an operator that works on the individual bits of a
value or a variable.

A bool is a built-in datatype used to describe logical data. The name “bool”
came from the father of logical data, George Boole.

bool isMarried = true;

A Boolean operator is an operator that evaluates to a bool (true or false).
For example, consider the expression (valuel == value2). Regardless of
the data-type or value of valuel and value2, the expression will always
evaluate to true or false.

Data-driven design is a programming design pattern where most of the
elements of the design are encoded in a data structure (typically an array)
rather than in the algorithm. This allows a program to be modified
without changing any of the code; only the data structure needs to be
adjusted.

A case label is part of a switch statement enumerating one of the options
the program must select between.

The process of converting one data type (such as a float) into another
(such as an int). For example, (float)3 equals 3.e.
A char is a built-in datatype used to describe a character or glyph. The

name “Char” came from “Character,” being the most common use.

char letterGrade = 'B';

Appendix | Procedural Programming in C++

Chapter 3.0
Chapter 3.1

Chapter 0.2

Chapter 2.1

Chapter 3.5

Chapter 1.2
Chapter 1.5

Chapter 1.5

Chapter 3.1

Chapter 3.5

Chapter 1.3

Chapter 1.2

comments

compiler

compound
statement

cohesion

coincidental

communicational

conceptual

concrete

conditional
expression

control

Comments are notes placed in a program not read by the compiler.
A compiler is a program to translate code in a one language (say C++)

into another (say machine language).

A compound statement is a collection of statements grouped with curly
braces. The most common need for this is inside the body of an IF
statement or in a loop.

if (failed == true)

{ // compound statement start
cout << "Sorry!\n"; // first statement
return false; // second statement

} // compound statement end

The measure of the internal strength of a module. In other words, how
much a function does one thing and one thing only. The four levels of
cohesion are: Strong, Extraneous, Partial, and Weak.

A measure of cohesion where items are in a module simply because they
happen to fall together. There is no relationship.

A measure of cohesion where all elements work on the same piece of data.

One of the three levels of understanding of an algorithm, conceptual
understanding is characterized by a high level grasp of what the program
is trying to accomplish. This does not imply an understanding of what the
individual components do or even how the components work together to
produce the solution.

One of the three levels of understanding of an algorithm, concrete
understanding is characterized by knowing what every step of an
algorithm is doing. It does not imply an understanding of how the various
steps contribute to the larger problem being solved. The desk check tool
is designed to facilitate a concrete understanding of code.

A conditional expression is a decision mechanism built into C+ + allowing
the programmer to choose between two expression, rather than two
statements.

cout << (grade >= 60.0 ? "pass" : "fail");

A measure of coupling where one module passes data to another that is
interpreted as a command.

Procedural Programming in C++ | Appendix | F. Glossary

Chapter 0.2
Chapter 1.0

Chapter 1.6

Chapter 2.0

Chapter 2.0

Chapter 2.0

Chapter 2.4

Chapter 2.4

Chapter 3.5

Chapter 2.0

Page 383

counter-controlled One of the three loop types, a counter-controlled loop keeps iterating a ~ Chapter 2.5
fixed number of types. Typically, this number is known when the loop
begins. A counter-controlled loop has four components: the start, the end,
the counter, and a loop body.

coupling Coupling is the measure of information interchange between functions. Chapter 2.0
The seven levels of coupling are: Trivial, Encapsulated, Simple, Complex,
Document, Interactive, and Superfluous.

cout COUT stands for Console OUTput. Technically speaking, cout a the Chapter 1.1
destination or output stream. In other words, it in the following example,
it is the destination where the insertion operator (<<) is sending data to.
In this case, that destination is the screen.

cout << "Hello world!";

CPU Central Processing Unit. This is the part of a computer that interprets ~ Chapter 0.2
machine-language instructions

c-string A c-string is how strings are stored in C++: an array of characters Chapter 3.2
terminated with a null (*\e") character.

data A measure of coupling where the data passed between functions is very ~ Chapter 2.0
simple. This occurs when a single atomic data item is passed, or when
highly cohesive data items are passed

decoder The instruction decoder is the part of the CPU which identifies the Chapter 0.2
components of an instruction from a single machine language instruction.

default A default label is a special case label in a switch statement corresponding Chapter 3.5
to the “unknown” or “not specified” condition. If none of the case labels
match the value of the controlling expression, then the default label is
chosen.

delete The delete operator serves to free memory previously allocated with new. Chapter 4.1
When a variable is declared on the stack such as a local variable, this is
unnecessary; the operating system deletes the memory for the user.
However, when data is allocated with new, it is the programmer’s
responsibility to delete his memory.

{
int * pValue = new int;
delete pValue;
}
DeMorgan Just as there are ways to manipulate algebraic equations using the Chapter 1.5

associative and distributed properties, it is also possible to manipulate
Boolean equations. One of these transformations is DeMorgan. A few
DeMorgan equivalence relationships are:

'(p || q) == !p & !q
'(p && q) == !p || !q
a ||l (b& c)==(a || b)& (a || c)
a8& (b || c) == (a & b) || (a && ¢)

Page 384 | F.Glossary | Appendix | Procedural Programming in C++

dereference
operator

desk check

do .. while

double

driver

dynamically-

allocated array

endl

eof

The dereference operator '*' will retrieve the data refered to by a pointer.

cout << "The data in the variable pValue is
<< *pValue;

A desk check is a technique used to predict the output of a given program.
It accomplished by creating a table representing the value of the variables
in the program. The columns represent the variables and the rows
represent the value of the variables at various points in the program
execution.

One of the three types of loops, a DO-WHILE loop continues to execute
as long as the condition in the Boolean expression evaluates to true. This
is the same as a WHILE loop except the body of the loop is guaranteed to
be executed at least once.

do
cin >> gpa;
while (gpa > 4.0 || gpa < 0.0);

A double is a built-in datatype use to describe large read numbers. The
word “Double” comes from “Double-precision floating point number,”
indicating it is just like a float except it can represent a larger number
more precisely.

double pi = 3.14159265359;

A driver is a program designed to test a given function. Usually a driver
has a collection of simple prompts to feed input to the function being
tested, and a simple output to display the return values of the function.

A dynamically-allocated array is an array that is created at run-time rather
than at compile time. Stack arrays have a size known at compile time.
Dynamically-allocated arrays, otherwise known as heap arrays, can be
specified at run-time.

{
}

ENDL is short for “END of Line.” It is one of the two ways to specify
that the output stream (such as cout) will put a new line on the screen.
The following example will put two blank lines on the screen:

int * array = new int[size];

cout << endl << endl;

When reading data from a file, one can detect if the end of the file is
reached with the eof() function. Note that this will only return true if the
end of file marker was reached in the last read.

if (fin.eof())
cout << "The end of the file was reached\n";

Procedural Programming in C++ | Appendix | F. Glossary

Chapter 3.3

Chapter 2.4

Chapter 2.3

Chapter 1.2

Chapter 2.1

Chapter 4.1

Chapter 1.1

Chapter 2.6

Page 385

escape sequences Escape sequences are simply indications to cout that the next character in ~ Chapter 1.1
the output stream is special. Some of the most common escape sequences
are the newline (\n), the tab (\t), and the double-quote (\")

event-controlled One of the three loop types, an event-controlled loop is a loop that keeps Chapter 2.5
iterating until a given condition is met. This condition is called the event.
There are two components to an event-controlled loop: the termination

condition and the body of the loop.

expression A collections of values and operations that, when evaluated, result in a ~ Chapter 1.3
single value. For example, 3 * value is an expression. If value is defined as
float value = 1.5;, then the expression evaluates to 4.5.

external A measure of coupling where two modules communicate through a global ~ Chapter 2.0
variable or another external communication avenue.

extraction operator The extraction operator (>>) is the operator that goes between cinand the ~ Chapter 1.2
variable receiving the user input. In the following example, the extraction
operator is after the cin.

cin >> data;

fetcher The instruction fetcher is the part of the CPU which remembers which Chapter 0.2
machine instruction is to be retrieved next. When the CPU is ready for
another instruction, the fetcher issues a request to the memory interface
for the next instruction.

for One of the three types of loops, the FOR loop is designed for counting. It~ Chapter 2.3
contains fields for the three components of most counting problems:
where to start (the Initialization section), where the end (the Boolean
expression), and what to change with every count (the Increment section).

for (int i = @; 1 < num; i++)
cout << array[i] << endl;

fstream The fstream library contains tools enabling the programmer to read and Chapter 2.6
write data to a file. The most important components of the fstream library
are the ifstream and ofstream classes.

#tinclude <fstream>

tunction One division of a program. Other names are sub-routine, sub-program, Chapter 1.4
procedure, module, and method.

tunctional A measure of cohesion where every item in the function is related to a ~ Chapter 2.0
single task.

Page 386 | F.Glossary | Appendix | Procedural Programming in C++

getline

global variable

ifstream

insertion operator

instrumentation

int

iomanip

iostream

The getline() method works with cin to get a whole line of user input.

char text[256]; // getline needs a string
cin.getline(text, 256); // the size is a parameter

A global variable is a variable defined outside a function. The scope extends
to the bottom of the file, including any function that may be defined below
the global. It is universally agreed that global variables are evil and should
be avoided.

The ifstream class is part of the fstream library, enabling the programmer
to write data to a file. IFSTREAM is short for “Input File STREAM.”

#tinclude <fstream>

{
ifstream fin("file.txt");

}

The insertion operator (<<) is the operator that goes between cout and the
data to be displayed. As we will learn in CS 165, the insertion operator is
actually the function and cout is the destination of data. In the following
example, the insertion operator is after the cout.

cout << "Hello world!";

The process of adding counters or markers to code to determine the
performance characteristics. The most common ways to instrument code
is to track execution time (by noting start and completion time of a
function), iterations (by noting how many times a given block of code has
executed), and memory usage (by noting how much memory was
allocated during execution).

An int is a built-in datatype used to describe integral data. The word “Int”
comes from “Integer” meaning “all whole numbers and their opposites.”

int age = 19;

The IOMANIP library contains the setw() method, enabling a C++
program to right-align numbers. The programmer can request the
IOMANIP library by putting the following code in the program:

#include <iomanip>

The IOSTREAM library contains cin and cout, enabling a simple C++
program to display text on the screen and gather input from the keyboard.
The programmer can request IOSTREAM by putting the following code
in the program:

#tinclude <iostream>

Procedural Programming in C++ | Appendix | F. Glossary

Chapter 1.2

Chapter 1.4

Chapter 2.6

Chapter 1.1

Chapter 4.4

Chapter 1.2

Chapter 1.1

Chapter 0.2

Page 387

jagged array A jagged array is a special type of multi-dimensional array where each row ~ Chapter 4.3
could be of a different size.

lexer The lexer is the part of the compiler to break a program into a list of tokens Chapter 1.0
which will then be parsed.
local variable A local variable is a variable defined in a function. The scope of the variable Chapter 1.4

is limited to the bounds of the function.

logical A level of cohesion where items are grouped in a module because they do Chapter 2.0
the same kinds of things. What they operate on, however, is totally
difterent.

machine Machine language is a computer language understandable by a CPU. Itis Chapter 0.2

language of the lowest abstraction. Machine language consists of noting
but 1’s and 0s.

modularization Modularization is the process of dividing a problem into separate tasks, ~ Chapter 2.0
each with a single purpose.

modulus The remainder from division. Consider 14 = 3. The answer is 4 with a Chapter 1.3
remainder of 2. Thus fourteen modulus 3 equals 2: 14 % 3 ==

multi-dimensional = A multi-dimensional array is an array of arrays. Instead of accessing each ~ Chapter 4.0

array member with a single index, more than one index is required. The
tollowing is a multi-dimensional array representing a tic-tac-toe board:
{
char board[3][3];
¥
multi-way IF Though an IF statement only allows the programmer to distinguish ~ Chapter 1.6

between at most two options, it is possible to specify more options
through the use of more than one IF. This is called an multi-way IF.

if (grade >= 90.0)

cout << "A"; // first condition
else if (grade >= 90.0)
cout << "B"; // second condition
else
cout << "not so good!"; // third condition
nested statement A nested statement is a statement inside the body of another statement. ~ Chapter 1.6

For example, an IF statement inside the body of another IF statement
would be considered a nested IF.

if (grade >= 80.90) // outer IF statement
if (grade >= 99) // nested IF statement
cout << 'A'; // body of nested IF statement
else

cout << 'B';

Page 388 | F.Glossary | Appendix | Procedural Programming in C++

new

null

NULL

ofstream

online desk check

parser

Pascal-string

pass-by-reference

It is possible to allocate a block of memory with the new operator. This
serves to issue a request to the operating system for more memory. It
works with single items as well as arrays.

{
int * pValue = new int; // one integer
int * array = new int[10]; // ten integers

}

The null character, also known as a null terminator, is a special character
marking the end of a c-string. The null character is represented as '\e',
which is always defined as zero.

{
}

char nullCharacter = '\@'; // 0x00

The NuLL address corresponds to the zero address exeeeeeeee. This address
is guaranteed to be invalid, making it a convenient address to assign to a
pointer when the pointer variable does not point to anything.

{
}

int * pValue = NULL; // points to nothing

The ofstream class is part of the fstream library, enabling the programmer
to write data to a file. OFSTREAM is short for “Output File STREAM.”

#tinclude <fstream>

{
ofstream fout("file.txt");

}

An online desk check is a technique to gain an understanding of how data
flows through an existing program. This is accomplished by putting
COUT statements at strategic places in a program to display the value of
key variables.

The parser is the part of the compiler understanding the syntax or
grammar of the language. Knowing this, it is able to take all the
components from the input language and place it into the format of the
target or output language.

One of the two main implementations of strings, a Pascal-string is an array
of characters where the length is stored in the first slot. This is not how
strings are implemented in C++.

Pass-by-reference, also known as “call-by-reference,” is the process of
sending a parameter to a function where the caller and the callee share the
same variable. This means that changes made to the parameter in the callee
will be reflected in the caller. You specify a pass-by-reference parameter
with the ampersand &.

void passByReference(int ¶meter);

Procedural Programming in C++ | Appendix | F. Glossary

Chapter 4.1

Chapter 3.2

Chapter 4.1

Chapter 2.6

Chapter 2.4

Chapter 1.0

Chapter 3.2

Chapter 1.4
Chapter 3.3

Page 389

pass-by-pointer

pass-by-value

pointer

procedural

prototype

pseudocode

register

sentinel-controlled

sequential

scope

Page 390 |

F. Glossary |

Pass-by-pointer, more accurately called “passing a pointer by value,” is the
process of passing an address as a parameter to a function. This has much
the same effect as pass-by-reference.

void passByPointer(int * pParameter);

Pass-by-value, also known as “call-by-value,” is the process of sending a
parameter to a function where the caller and the callee have different
versions of a variable. Data is sent one-way from the caller to the callee;
no data is sent back to the caller through this mechanism. This is the
default parameter passing convention in C++.

void passByValue(int parameter);

A pointer is a variable holding and address rather than data. A data
variable, for example, may hold the value 3.14159. A pointer variable, on
the other hand, will contain the address of some place in memory.

A measure of cohesion where all related items must be performed in a
certain order.

A prototype is the name, parameter list, and return value of a function to
be defined later in a file. The purpose of the prototype is to give the
compiler “heads-up” as to which functions will be defined later in the file.

Pseudocode is a high-level programming language designed to help people
design programs. Though it has most of the elements of a language like
C++, pseudocode cannot be compiled. An example of pseudocode is:

computeTithe(income)
RETURN income + 10
END

The part of a CPU which stores short-term data for quick recall. A CPU
typically has many registers.

One of the three loop types, a sentinel-controlled loop keeps iterating until
a condition is met. This condition is controlled by a sentinel, a Boolean
variable set by a potentially large number of divergent conditions.

A measure of cohesion where operations in a module must occur in a
certain order. Here operations depend on results generated from preceding
operations

Scope is the context in which a given variable is available for use. This
extends from the point where the variable is defined to the next closing
braces }.

Appendix | Procedural Programming in C++

Chapter 3.3

Chapter 1.4
Chapter 3.3

Chapter 3.3

Chapter 2.0

Chapter 1.4

Chapter 2.2

Chapter 0.2

Chapter 2.5

Chapter 2.0

Chapter 1.4

sizeof

stack variable

stamp

string

structure chart

styleChecker

stub

submit

switch

The sizeof function returns the number of bytes that a given datatype or
variable requires in memory. This function is unique because it is evaluated
at compile-time where all other functions are evaluated at run-time.

{
int integerVariable;
cout << sizeof(integerVariable) << endl; // 4
cout << sizeof(int) << endl; // 4
}

A stack variable, otherwise known as a local variable, is a variable that is
created by the compiler when it falls into scope and destroyed when it falls
out of scope. The compiler manages the creation and destruction of stack
variables wherease the programmer manages the createion and destruction

of dynamically allocated (heap) variables.

A measure of coupling where complex data or a collection of unrelated
data items are passed between modules.

A “string” is a computer representation of text. The term “string” is short
for “an alpha-numeric string of characters.” This implies one of the most
important characteristics of a string: is a sequence of characters. In C+ +,
a string is defined as an array of characters terminated with a null character.

{
}

char text[256]; // a string of 255 characters

A structure chart is a design tool representing the way functions call each
other. It consists of three components: the name of the functions of a
program, a line connecting functions indicating one function calls another,
and the parameters that are passed between functions.

styleChecker is a program that performs a first-pass check on a student’s
program to see if it conforms to the University style guide. The
styleChecker should be run before every assignment submission.

A stub function is a placeholder for a function that is not written yet. The
closest analogy is an outline in an essay: a placeholder for a chapter or
paragraph to be written later. An example stub function is:

void display(float value)
{
}

submit is a program to send a student’s file to the appropriate instructor.
It works by reading the program header and, based on what is found,
sending it to the instructor’s class and assignment directory.

A switch statement is a mechanism built into most programming
langauges allowing the programmer to specify between more than two
options.

Procedural Programming in C++ | Appendix | F. Glossary

Chapter 1.2
Chapter 3.0

Chapter 4.1

Chapter 2.0

Chapter 1.2
Chapter 3.2

Chapter 2.0

Chapter 1.0
Appendix A

Chapter 2.1

Chapter 1.0

Chapter 3.5

Page 391

tabs The tab key on a traditional typewriter was invented to facilitate creating ~ Chapter 1.1
tabular data (hence the name). The tab character (*\t") serves to move the
cursor to the next tab stop. By default, that is the next 8 character
increment.

cout << "\tTab";

temporal A measure of cohesion where items are grouped in a module because the Chapter 2.0
items need to occur at nearly the same time. What they do or how they do
it is not important

testBed testBed i a tool to compare a student’s solution with the instructor’s key. ~ Chapter 1.0
It works by compiling the student’s assignment and running the program
against a pre-specified set of input and output.

variable A variable is a named location where you store data. The name must bea Chapter 1.2
legal C+ + identifier (comprising of digits, letters, and the underscore _
but not starting with a digit) and conform to the University style guide
(camelCase, descriptive, and usually a noun). The location is determined
by the compiler, residing somewhere in memory.

while One of the three types of loops, a WHILE-loop continues to execute as Chapter 2.3
long as the condition inside the Boolean expression is true.

while (grade < 70)
grade = takeClassAgain();

Page 392 | F.Glossary | Appendix | Procedural Programming in C++

Appendix

Dt ————————————————————————————— 78 CONCIELC. ceettttteeerinteineeeeeeeeeeteeneeeeeeeeeeeneeees 161, 379
D e ——————————— 80 conditional expression............ 286, 370, 376, 379
#define ...oooviiiiiiiiec 125,377 CONLTO eeviiieieiiiiee e 379
Fifdef ..o, 126, 377 counter-controlled loop.......................... 175, 380
&& i 77 CoUplingccooviiiiiiiiiiiiiii 380
[| oot 78 (<0 SR 25,183, 374, 380
e e S OO 48 CPU i 5, 380
S ettt 26 data e 380
e e 50 data-driven design...........cccceeieniininnnnnn 231, 378
T I terereeeereessreessrtessreessaee s s ae s raee s raessaaans 80 decoderoviiiiiiiiii 380
ADSTIAC..eeiiiieeeeiireeeee e 161, 377 delete ..ovvvvveiiiiiiiiiiiiiee, 322,370, 376, 380
address-of operatorcccccoeeeiinn 251,377 DeMorgancccoeeeevieiieienieniiiieneeeen 79, 380
ALU e 5,377 dereference operator............cccceeienenenn 252, 381
ALZC oo 341, 376, 377 desk checK......ooovvviveiiiiiiiiiiicciee e, 161, 381
ALZV .o 341, 376, 377 AOUDIE ...vvveiiiiieeeee e, 381
ALTAY . 208, 375, 378 do-while l00p.......ccociiiiiiiiii 381

array of strings............ccccceeeeenins 211, 219, 220 ALIVEL vt 381

declareooeviiieiiie 209 AIIVELS 1ottt 130

design......ccooiviiiiiiii 227,231 endl. .o 26, 381

INIEALZE .eeeeeeeeceeeeee e 210 @O et 190, 381

lOOP ..o 212,214 €SCAPE SEQUENCES ..vvrenvrianrieniieniieiienn, 29,31, 382

PArAMELELS ... 215,217,218 e e e 29

POINLELS ..o 263, 265, 267 ettt e e e e e e e aeeeens 29

FEICIENCE .ueieeiiiiie e ettt 212 N e 29

STLINGS. .ttt 213 I e 26
assembIy........coooiiiiii, 378 L 27
R o SRR 122,374, 378 event-controlled loopcccei 177, 382
bitwise OPeratorcccceevevvecieiicinnnnn. 288, 378 EXPIESSION ...ttt 382
DOOL.....oiiiiiiii 38,378 EXPIESSIONS ...vviiiiiiiiie it 46
Boolean operatorsccccoeveeiiieninnnen. 76, 378 external ..., 382
CASTING ..t 51,53, 378 €Xtraction Operator.................. 39,189, 370, 382
Char . 37,378 FlOAL. e 37
CIIL ittt e e e et e e e e e e e e eaeeeees 374 fStreamueeeeeeieeeeiieeeee e 184, 188, 382
CINLIZGNOTE () cuveviiiiiiiiiiiieiieie e 248, 330 functional.........ccooviiiiiiiiini 382
code ZENEratorcoceevuiiiiiiiiiiiiiiiic e 17 getline....coooviiiiiiiii 40, 383
CONESIONevvvveieieeeieeieeeaaiaans 108, 379 global variable............ccccooiiii 69, 383
coincidental.......cooovvveiiiiiiiiiiiiieeeeeeeeeeeee, 379 e 86, 374
COMIMENESoovvenrrrrreeeeeeeeiennnneen 8, 365, 366, 379 HSTreamooovvvvinieeeeeeeeeeeeieeee, 188, 189, 375
COMMUNICAIONAL.........cvvviviiiiiiiiieiiiiieiiiiiiiiaanns 379 INsertion Operator............... 26, 39, 189, 370, 383
COMPIlEr ..o 379 INSTIUMENTING....oviiiiiiiiieie e 350, 383
compound IF ... 89 INE Lo 36, 383
compound StateMeNt.........ceeueevrieriiiriieinnenne. 379 IOMANIP...eeiiiiiiicic 28, 383
conceptual ... 161, 379 TOSEICAIN ... 7,383

Procedural Programming in C++ | Appendix | G.Index | Page 393

jagged array.......cocooiiiiiiiiii 344, 384
JEXCL v 17,384
T3] USSP 17
local variableccovveeiiiiiiiiiiiiieieeee, 68, 384
logicalccooiiiiiiii 384
LOOP...ciiiiiiiic 149
desk-checkcccovvvvvennnnnn. 162, 163, 164, 165
do-whileooovviiiiiiiiiiiinne, 152,153, 375
fOr oo 154, 155, 375, 382
pitfalls......cooiiiiii 166
while ..o 150, 151, 375, 388
modularization...........cceeevveeeeniiieeeeniiee e 108
modulusccceeveriiiiiiieee 47,49, 50, 384
multi-dimensional arrays........................ 376, 384
declareooeeovieiiiiiie e 306
PATAMELELS ..o 307
FEIEIENCE .eeieeiiiie ettt 307
SYNEAX .o 306
multi-way IF ... 89, 384
NAMESPACEenviiiiiiiiieinie et 7
nested TFoooovviiiniiie e 89, 384
NEW ceevieeeiiee e eeree e 320, 370, 376, 381, 385
null.. 237, 385
NULL. .ottt 319, 385
fo) 0 (er:V0 1 SRR 185, 375, 385
online desk checkccoovvvvrvviiiiiiiinnn, 161, 385
order of operations.............c.ccceviiiiiinnnn. 47,82
PAISEL ..ot 17, 385
pass-by-pointer...........cccoevviiiiiiiinnnne. 257, 386
pass-by-reference................... 63, 65, 66, 257, 385
pass-by-value...........ccooooiiinnn. 65, 66, 257, 386
pitfall
<aANd <= oo 166
=and == ... 91, 166
changing pointerscccccceiiiiiiiiinnns 258
extra Semicolon..........ccccevvveveieeinennnnnn.. 91, 166
infinite l0OP.......cocoviiiiiiiiiiii 166
MISSING {}S..eoiviiiiiiiiiiiiic, 92
POINLET .o 249, 253
Address-ofccovvviiieiiiiiie e 251
CONSANE POINLELS ...vvevverieireenicirieieenee e 272
declareoeeecviieeeeiiee e 250
dereferenceoeeveviieeeiiiiee e 252

PASSING .. 256, 257

POINLELS ..vvivieiieiceic e 386
PLECISION() veovvevierieieinieiiie e 25
procedural...........oooiiiiiiiinii 386
PIOtOLYPE .o 67, 386
pseudocodeccoiiiiiiiiiiiii 138, 386
scientific NOTATION.......c..ovieeiieiiiieiicie e 25
SCOPE ..ttt 67, 386
SCATCH ., 229,230
sentinal-controlled loop......................... 179, 386
sequential.........cciiviiiiiiiii 386
SEE() v 25,374
SEEW () cvveieeiieee e 28, 30
SIZEOL .t e ettt 219, 387
SIZEOK()ttt 370
SEAMIP e 387
SErING Class......ccooviiiiiiiiiiiii 331
append.......ccooiiiiiiii 334
€ USTI() eeerreeeeeireee e ettt 336
declaring........ccccoviiiiiiiiii 332
stream Interfaces.........cooevviiiiiiiiiiiinn. 333
string library..........ccooi 332
SEIINES .o 236, 375, 387
COMPATING ..o 240
C-STIINES ... 237, 380
declare ... 238
implementationc.ccoceviiiiiiiiiinn, 237
loop....ccoiviiinins 240, 241, 243, 245, 267, 270
Pascal string..........ccoevvviiiiiiiiiiii, 237
PASSING .. 239
SErUCtUre Chart....coccvveeeeeeieeiiiiiineeeeeeeeenn, 114, 387
STUD . 132, 387
styleChecker ..o 18,372, 387
SUDMIL....oviiiiiiiiiiic 20, 372, 387
SWItCh....ooiiiiii 279, 285, 376, 387
CASC..ueeeeeeeiiiieeeeeeeeeeeeeeeeeeeeeeerarraaaans 281, 378
controlling expression.............cccceeeiieenens 279
default.......ooovvviniiiiiie e 283, 380
EADS .t 27,388
temporal........ccooiiiiii 388
testBed ...uvviiiiiiiiie 18,372, 388
variable......coooviiiiiii e 35, 388

Page394 | G.Index | Appendix | Procedural Programming in C++

	Table of Contents
	Course Overview
	Goals
	Course Layout
	How to Use This Textbook
	Sam and Sue
	Needing Help

	Computers & Programs
	Objectives
	Overview of Computers and Programs
	Computers
	Programs
	Comments
	Line comments
	Block comments

	1.0 First Program
	Objectives
	Prerequisites
	Overview of the process
	0. Login
	Remote access for Windows computers
	Remote access for Macintosh or Linux computers

	1. Copy Template
	2. Edit with Emacs
	3. Compile
	4. Test Bed
	5. Style Checker
	6. Submit

	1.1 Output
	Objectives
	Prerequisites
	Overview of Output
	COUT
	Displaying Numbers
	New Lines
	The Insertion Operator
	Alignment
	Tabs
	Set Width
	Using Tabs and Set Width Together

	Special Characters

	1.2 Input & Variables
	Objectives
	Prerequisites
	Overview
	Variables
	Integers
	Floating point numbers
	Characters
	Text
	Logical Data

	Input
	Multiple Extraction Operators
	Whole Lines of Text

	1.3 Expressions
	Objectives
	Prerequisites
	Overview
	Evaluating Expressions
	Step 1 - Variables are replaced with values
	Step 2 - Order of Operations
	Increment ++
	Multiplication *
	Division /
	Modulus %
	Assignment =

	Step 3 - Converting
	Casting

	Putting it all together

	1.4 Functions
	Objectives
	Prerequisites
	Overview
	Function Syntax
	Declaring a Function
	Calling a Function

	Parameter Passing
	Multiple Parameters
	Working with Parameters
	Pass-By-Reference

	Prototypes
	Scope
	Local Variables
	IF Local
	Blocks
	Globals

	1.5 Boolean Expressions
	Objectives
	Prerequisites
	Overview
	And, Or, and Not
	AND
	OR
	NOT
	Example

	Comparison Operators
	Equivalence
	Relative Operators

	Order of Operations

	1.6 IF Statements
	Objectives
	Prerequisites
	Overview
	Action/No-Action
	Action-A/Action-B

	Details
	Compound Statements
	Nested Statements
	Multi-Way

	Pitfalls
	Pitfall: = instead of ==
	Pitfall: Extra semicolon
	Pitfall: Missing {}s

	Unit 1 Practice Test
	Unit 1 Project : Monthly Budget
	Interface Design
	Structure Chart
	Algorithms
	main()
	getIncome()
	display()
	computeTithing()
	computeTax()

	Project 02
	Project 03
	Project 04

	2.0 Modularization
	Objectives
	Prerequisites
	Overview
	Structure Chart
	Functions
	Parameters
	Program structure
	Designing with Structure Charts

	Cohesion
	Strong Cohesion
	Extraneous Cohesion
	Partial Cohesion
	Weak Cohesion

	Coupling
	Trivial Coupling
	Encapsulated Coupling
	Simple Coupling
	Complex Coupling
	Document Coupling
	Interactive Coupling
	Superfluous Coupling

	Problems

	2.1 Debugging
	Objectives
	Prerequisites
	Asserts
	Syntax

	#define
	#ifdef
	Driver programs
	Stub functions

	2.2 Designing Algorithms
	Objectives
	Prerequisites
	Reading
	Another design tool
	Using pseudocode

	Pseudocode keywords
	Receive
	Send
	Arithmetic
	Remember
	Compare
	Repeat
	Functions

	2.3 Loop Syntax
	Objectives
	Prerequisites
	Overview
	WHILE
	DO-WHILE
	Example

	FOR

	2.4 Loop Output
	Objectives
	Prerequisites
	Desk Check
	Pitfalls
	Pitfall: = instead of ==
	Pitfall: < instead of <=
	Pitfall: Extra semicolon
	Pitfall: Infinite loop

	2.5 Loop Design
	Objectives
	Prerequisites
	Three Types of Loops
	Counter-Controlled
	Event-Controlled
	Sentinel-Controlled

	2.6 Files
	Objectives
	Prerequisites
	Overview
	Writing to a File
	FSTREAM library
	Declaring a stream variable
	Opening a file
	Streaming data to a file
	Closing the file

	Reading from a File
	FSTREAM library
	Declaring a stream variable
	Check for errors
	Read the data
	Reading to the end of the file
	Closing the file

	Filenames

	Unit 2 Practice Test
	Unit 2 Project : Calendar Program
	Interface Design
	Output
	Input
	Errors

	Project 05
	Project 06
	Project 07

	3.0 Array Syntax
	Objectives
	Prerequisites
	Overview
	Declaring an Array
	Initializing
	Declaring an array of strings

	Referencing an Array
	Loops
	Referencing an array of strings

	Arrays as Parameters
	Passing strings
	Passing arrays
	Passing an array of strings
	Passing Characters, Strings, and List of Strings

	3.1 Array Design
	Objectives
	Prerequisites
	Overview
	Lists of Data
	Table Lookup

	3.2 Strings
	Objectives
	Prerequisites
	Overview
	Implementation of Strings
	Null-character
	C-Strings

	String Syntax
	Declaring a string
	Passing a string

	Comparing Strings
	Traversing a String
	Traversing using the null-character

	3.3 Pointers
	Objectives
	Prerequisites
	Overview
	Syntax
	Declaring a pointer
	Getting the address of a variable
	Retrieving the data from a pointer

	Pointers and functions
	Pass-by-pointer
	Pitfall: Changing pointers
	Arrays are pass-by-pointer

	3.4 Pointer Arithmetic
	Objectives
	Prerequisites
	Overview
	Arrays
	Pointers as Loop Variables
	Array traversing loop
	String traversing loop

	Constant Pointers

	3.5 Advanced Conditionals
	Objectives
	Prerequisites
	Overview
	Switch
	Expression
	Case labels
	Default
	Body statements

	Conditional Expression
	Example 1: Absolute value
	Example 2: Minimum value

	Bitwise Operators

	Unit 3 Practice Test
	Unit 3 Project : MadLib
	Interface Design
	File Format
	Project 08
	Project 09
	Hints
	Assignment

	Project 10
	Hints
	Assignment

	4.0 Multi-Dimensional Arrays
	Objectives
	Prerequisites
	Overview
	Syntax
	Declaring an array
	Referencing an array
	Passing as a parameter

	4.1 Allocating Memory
	Objectives
	Prerequisites
	Overview
	NULL Pointer
	Definition of NULL
	Using NULL
	NULL check

	Allocation with New
	Memory allocation failure
	Allocating arrays

	Freeing with Delete

	4.2 String Class
	Objectives
	Prerequisites
	Overview
	Syntax
	String library
	Declaring a string
	Stream interfaces
	Text manipulation
	Using string objects as file name variables

	4.3 Command Line
	Objectives
	Prerequisites
	Overview
	Syntax
	argc
	argv

	Jagged Arrays

	4.4 Instrumentation
	Objectives
	Prerequisites
	Overview

	Unit 4 Practice Test
	Unit 4 Project : Sudoku
	Interface Design
	Program starts
	Show Instructions
	Display the Board
	Save and Quit
	Edit One Square
	Show Possible Values

	Project 11
	Project 12
	Project 13

	A. Elements of Style
	Elements of Style
	Variable and function names
	Function and program headers
	General Comments
	Spacing
	Other Standards

	Style Checklist
	Examples

	B. Order of Operations
	C. Lab Help
	D. Emacs & Linux Cheat-Sheet
	E. C++ Syntax Reference Guide
	F. Glossary
	G. Index

